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Several factors may have a decisive influence on the precise solution of adjusting 
problems with many unknowns. Accuracy may significantly be reduced by four Basic 
sources of error [1], such as: 

 
1.  Inherent errors of the theory 

To solve any problem, first a mathematical model has to be chosen which, however, 
only approximates the basic problem with certain simplifications and neglects. 

 
2.  Inherent errors of measurement 

Errors bear often on the observation results in the computation, because of the finite 
accuracy proper to the measuring instruments. If the matrix formed of the coefficients of 
some equation system and the vector of absolute terms are quantities obtained by 
measurement and calculation - i. e. known only approximately - then a single approximation 
of the "theoretical" equation system is known. 

 
3.  Approximation errors 

To solve the mathematical model chosen according to 1., often numerical 
approximation methods have to be applied. Linearization of the observation or condition 
equations, the use of iteration methods etc. ... may act as sources of error. 
 
4.  Rounding-off errors 

The limited number representation of computers and the primary operations - 

especially calculation of product sums type  i

n

i
iba∑

=1
  - imply important sources of error by 

rounding-off. If the accuracy of operations in a calculation set is limited, the rounding-off 
errors in each operation add up to decisively affect the accuracy of the final result. 

Let us consider particulars of the enumerated error types. 
In the majority of the problems, adjustment is based on Gauss' theory of errors using 

the least squares adjustment through writing and solving the so-called normal equations. This 
implies a possible mathematical formulation according to 1. Of course this is not the only 
existing model, even as will be pointed out later, in some cases it is unworkable. 

After the best fitting mathematical model is chosen, knowing the laws of error 
propagation and the desired accuracy, the necessary observation accuracy can be determined, 
in view of 2. (Since, however, the two are related, it is imperative to choose the model 
according to 1, and to determine the adequate observation accuracy simultaneously.) 
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Numerical solution of a problem is connected with approximations according to 3. 
Also the choice of the mathematical model and item 3 may be interrelated, because in general 
the different mathematical models may involve different numerical approximatíve methods. 

Among the sources of error referred to in 4, the rounding-off errors may greatly 
influence the accuracy of the final result. There are two possibilities to eliminate, or better to 
diminish them, víz.: use of double-precision numbers when collecting inner products (product 
sums); and choice of a suitable mathematical model. Obviously, algorithms requiring to form 

as few product sums type  i

n

i
iba∑

=1

  during the calculations as possible are preferred. 

Analyzing the adjustment problems, great many problems are found where the most 
common method (solution by writing and solving normal equations) fails in accuracy, - in 
some cases the error of the solution may exceed the expected error limits by orders of 
magnitude. 

To mention but a few examples, recently we were faced by this problem in adjusting 
certain gravimetric nets, orbit elements of satellites, or deflection of the vertital calculated e. 
g. from Eötvös torsion balance measurements. 

Now, some statements concerning the solution of normai equation systems will be 
made to confirm the insufficient accuracy and even uselessness or falseness of the adjustment 
method by setting up and solving normal equations in the case of so-called poorly 
conditioned adjustment problems. 

Be the matrix equation (n > r) 
 

 
)1,()1,(),()1,( nrrnn

lxAv +=  

 
the form expressed for correction of the linearized observation equations of some adjustment 
problem - where  v  is the vector of residuals,  x  the vector of unknowns,  A  the coefficient 
matrix of the observation equations and  l  the vector of absolute terms. 

The condition 
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is likely to be satisfied by the normal equation system 
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using symbols 
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Matrix  N  formed according to (3) is the so-called coefficient matrix of the normal equation 
system (1). (The transpose of matrix (vector)  A  will be denoted by  *A ,  its inverted by  

1−A , the transpose of the inverted or the ínverted of its transpose by  *−A .) 
Thus, the coefficient matrix  N  of the normal equation system and its vector  n  are 

seen to be functions of the coefficient matrix  A  of the observation equation system and of its 
absolute term l. The coefficients of the observation equations being measured and calculated 
quantities therefore according to 2, only an approximation of the "theoretically accurate" 
equation system is known and can be solved. If the theoretically exact equation system has an 
unambiguous solution, it is not sure at all that the approximation has one single solution and 
even if it has, the two solutions might greatly differ. One may wonder how much the 
coefficients of a linear equation system of unambiguous solution can be changed to produce a 
new approximatíve system with a necessarily unambiguous solution so that the solutions of 
the two systems are rather similar in some respect. And also, what are conditions for matrix  
N  obtained by slightly changing the invertible matrix  N~   to have an inverted for the 
difference of matrices  1−N   and   1~ −N   to be email in some respect. 

Let us introduce now the concept of stable and unstable inverted matrices. An 
inverted matrix is stable if a small variation of the original matrix elements results in a 
proportionally small change in the elements of the ínverted matrix, in the opposite case it is 
unstable. 

The original matrix of the stable inverted matrix is termed a wellconditioned matrix, 
and that of the unstable inverted matrix is termed a poorly conditioned one. 

(To be noted that the conditioning of matrices is well characterized by the condition 
number. Among the common definitions, condition number of a matrix N is the numerical 
value 

i

icond
λ

λ
=

min
max

)(N  (4) 

 
where   λi (i = 1, 2, . . . , k)   are the eigenvalues of matrix  N .) 

If the elements of a poorly conditioned matrix are but approximately known, this 
matrix may prove practically singular. Namely the determinant of the "theoretical" matrix 
may happen to be non-zero, but changing a single element of the matrix within the 
observation of computation accuracy a matrix with zero determinant may be obtained. For 
instance in case of   δ = 0 ,  matrix 
 

 

















 δ+

=

3864
8975
6796
4564

N  

 
has a determinant   det (N) = 1 ,  but for   δ = 1/158 (≈≈ 6 . 10-3),   det (N) = 0 ,  the matrix 
can be considered as practically singular. 

In case of an equation system with a poorly conditioned matrix, a minute change of 
the coefficients may result in a change of the solution vector by orders of magnitude. The 
equation system 

 
1.0 xl + 100,0 x2  = 101,0 
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1.0 xl + 100,1 x2  = 101,1 
 

is considered as an example. The condition number of the coefficient matrix is very high, 
thus it is poorly conditioned. The solution of the equation system is   xl =1,   x2 = 1.  

Changing the first coefficient of the first row of the system by as little as    ≈10
-3

,    we obtain    
x1 = 100,    x2 = 0. 

It has still to be shown that certain adjusting problems lead to normal equations with 
an a priori poorly conditioned matrix. (These are the so-called problems of poorly 
conditioned adjustment.) 

Let us consider the following problem [2]. Be the matrix of the observation equations 
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where    is a random variable. According to (3) 
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with a condition number according to (4) in case of   δ→0: 
 
 ∞=δδ+= −
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There are great many similar problems, not to be discussed here. 

Above, adjustment problems were shown to exist, leading to a normal equation 
system of a priori poorly conditioned matrix. It was also demonstrated that in case of a poorly 
conditioned coefficient matrix, changing coefficients within the observation or computation 
accuracy may change the solution vector by orders of magnitude. In such cases the adjusting 
method involving setting up and solving normal equations is little more than a guarantee of 
the existence of a solution. 

According to item  1  of the introduction, use of the above adjustment model for 
poorly conditioned adjustment problems is inexpedient, therefore a method likely to offer an 
adequate solution also for normal equations with poorly conditioned coefficient matrix is 
required. 

In the following a more or less known mathematical model to bypass the normal 
equations is outlined, likely to give a direct solution applying matrix transformation on the 
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observation (or condition) equation system. This model - the so-called orthogonalization 
method - is also efficient in solving poorly conditioned problems. 

 
 

The general orthogonalization method and its application 
 

Matrix   Â    is partitioned in the form: 
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where thus the hypermatrix  Â   will have submatrices  2t12t21 A,A,...,A,A −   as 
blocks. The joint matrix blocks of odd and of even subscripts are named left-side and right-
side submatrices, respectively, and block  1A   the fundamental submatrix. According to the 
orthogonalization algorithm, each matrix block will be treated differently. 

The orthogonalization method is aimed at transforming hypermatrix  Â   into a 
hypermatrix 
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of identical structure. 

The transformation is done in two steps, according to the following algorithm. 
Columns of matrices  

),( rn
A  and  

),( rn
W  are denoted by vectors  raaa ,,, 21 L   and  

rwww ,,, 21 L ,  respectively: 
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and 
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Denote the inner products of two arbitrary vectors by 
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as  (b, c)  and the Euclidean norm of a vector in form of  Eb . As known: 
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The orthogonalization of matrix 
),( rn

A  can be considered as decomposition into the 

product of a matrix 
),( rn

W  with orthonormal columns by an upper triangular matrix 
),( rr

G  [3], 

thus  
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With a modification of the Schmidt's procedure [4], [5] orthogonalization can be 

performed as follows: 
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Now the transformation  WA ˆˆ →   is carried out. First the left-side submatrix of  Â   

is transformed into the corresponding left-side submatrix of matrix  Ŵ   by algorithms (6) 



 7

and (7) in a way that the inner products  )w,(a j
(j)
i   in (7) and the vector norms  E1a   and  

Eiw   in (6) are formed by using only fundamental submatrix elements. 

Then the right-side submatrix of  Â   will be transformed into the corresponding 
right-side submatrix of matrix  Ŵ   such as: 
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where  )(l

ka   and  )(l
kw   are  l-th  columns of submatrices  kA   and  kW , respectively, for      

k = 1, 2, . . . , 2t.  Also here the necessary inner products can only be computed from the 
fundamental submatrix elements. 

In accordance with (5) thus: 
 

 

M

),(
2

),(

*
1

),(
3

),(
4

),(
4

),(

1

),(
3

),(
3

),(
2

),(

*
1

),(
1

),(
2

),(
2

),(

1

),(
1

),(
1

.

.

pnnrrmpmpm

rrrmrm

pnnrrnpnpn

rrrnrn

AWWAW

GAW

AWWAW

GAW

−=

=

−=

=

−

−

 (8) 

 
It must be noted that transformation  WA ˆˆ →   can also be performed by omitting an arbitrary 
number s of rows, corresponding of course to the omission of an arbitrary even number of 
submatrices  kA   and  kW   of higher subscripts. 
 

By way of illustration, the above orthogonalization method is applied for the 
adjustment of intermediate observations in case of mutually independent unknowns (6). For 
the sake of simplicity, observed values with unit weights are supposed. Now, with suitable 
substitutions the transformation  WA ˆˆ →   takes the form 
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where 
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are functions of the adjusted quantitiea (s  is the number of functions),  0  is a zero vector, 
and  E  a unit matrix. - Other symbols are already knownfrom the foregoing. 

From relationships (8) it is evident that in fact, transformation (9) yields the wanted 
quantities directly at the indicated places, namely: 
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It is easy to prove that 
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there is, however, no direct need of it, as the different matrices of reciprocal weight are 
obtained simply from the left-side submatrix of  Ŵ . The matrices of reciprocal weight of the 
unknowns  (x)Q   and of the adjusted quantities are, respectively: 
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Also the case should be shortly mentioned where, rather than a unit matrix, weight 

matrix  P  is a diagonal matrix with only positive elements in the principal diagonal. Matrices 
A  and  l  in transformation (9) are substituted by the following: 
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Now the transformation becomes, similarly to (9): 
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It can be proved that in this case 
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For the sake of completeness it is noted that the above transformation  WA ˆˆ →   is a 

highly accurate method for solving linear equation systems for  n = r  if the last  s  rows are 
omitted. 

In the above problem, application of the orthogonalization adjusting method was 
shown only for the adjustment of intermediate observations. Discussion of the adjustment of 
conditioned observations would mean to repeat the above derivation, and therefore it is 
omitted here. Adjustment of intermediate observations with conditions and of conditioned 
observations with unknowns [6] would proceed similarly. Adjustment of the latter two 
problems by orthogonalization is, however, somewhat more complicated. 

Finally, it will be shown that adjusting calculations by setting and solving normai 
equations are always poorer in numerical stability than are those by the orthogonalization 
method. 

According to item iv, among two mathematical models, that one is more stable where 

less product sums type   ∑
=

n

i
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   are to be formed in computation. 

It is easy to calculate that in using the orthogonalization method represented by (9), 

altogether a   
2
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of the solution vector   x.  Using other method, to produce the normal equation system (3), 

according to (1) and (2),   )( rnn +2    product sums type   ∑
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Since for   rn ≥  
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the orthogonalization method has the greater numerical stability (although at this point the 
classic method would only establish the normal equation system as yet to be solved, - 
whereas the orthogonalization method produced already the complete solution). 

As a matter of fact, however, the orthogonalization model has also its limits of 
validity. Where the vector columns of matrix  A  include linearily related (or nearly related) 
vectors, the use of the orthogonalization method must be avoided, despite the higher 
numerical stability. 
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Summary 
 

First, possible sources of unexpected errors in up-to-date computerized adjustment are ontlined. 
Attention is called to the importance of selecting the beat fitting mathematic models. In certain cases the 
adjusting calculation by establishment and solution of normai equationa is inefficient, use of the 
orthogonalization method is suggested instead. Finally a model directly applicable in the orthogonalization 
method for adjustment calculations is presented and illustrated on a well-known problem. 
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