

SUPPORT VECTOR CLASSIFIER VIA MATHEMATICA

B. PALÁNCZ1, L. VÖLGYESI2,3

1 Department of Photogrammetry and Geoinformatics
2 Department of Geodesy and Surveying

Budapest University of Technology and Economics
3 Physical Geodesy and Geodynamic Research Group of the Hungarian Academy of Sciences

H-1521 Budapest, Hungary
e-mail: palancz@epito.bme.hu

Abstract

In this case study a Support Vector Classifier function has been developed in Mathematica. Starting
with a brief summary of support vector classification method, the step by step implementation of the
classification algorithm in Mathematica is presented and explained. To check our function, two test
problems, learning a chess board and classification of two intertwined spirals are solved. In addition an
application to filtering of airborne digital land image by pixel classification is demonstrated using a
new SVM kernel family, the KMOD, a kernel with moderate decreasing.

Keywords: software Mathematica, kernel methods, pixel classification, remote sensing.

Introduction

Kernel Methods are relatively new family of algorithms that presents a series of
useful features for pattern analysis in datasets. Kernel Methods combine the
simplicity and computational efficiency of linear algorithms, such as the perception
algorithm or ridge regression, with flexibility of nonlinear systems, such as for
example neural networks, and rigour of statistical approaches such as regularization
methods in multivariate statistics. As a result of the special way they represent
functions, these algorithms typically reduce the learning step to convex optimization
problem that can always be solved in polynomial time, avoiding the problem of local
minima typical of neural networks, decision trees and other nonlinear approaches [1].

1 Support Vector Classification

1.1 Binary classification

In case of binary classification, we try to estimate a real-valued function f:

RRX n →⊆ using training data, that is n - dimensional patterns ix and class labels
}1,1{−∈iy

}1,1{)),(...,),,((11 −×∈ n
mm Ryxyx

such that f will correctly classify new examples (x, y) − that is, f(x) = y for examples
(x, y), which were generated from the same underlying probability distribution P(x,y)
as the training data. If we put no restriction on the class of functions that we choose

our estimate f from, however, even a function that does well on the training data − for
example by satisfying ii yxf =)(for i = 1...m − need not generalize well to unseen
examples. Suppose we know nothing additional about f (for example about its
smoothness), then the values on the training patterns carry no information whatsoever
about values on novel patterns. Hence learning is impossible, and minimizing the
training error does not imply a small expected test error.
 Statistical learning theory, or Vapnik-Chervonenkis theory, shows that is
crucial to restrict the class of functions that the learning machine can implement to
one with capacity that is suitable for the amount of available training data.

1.2 Optimal hyperplane classifier

To design learning algorithms, we thus must come up with a class of functions whose
capacity can be computed. SV classifiers are based on the class of hyperplanes

RbRwbxw n ∈∈=+ ,0,

corresponding to decision functions

),()(bxwsignxf += .

We can show that the optimal hyperplane, defined as the one with the maximal
margin of separation between the two classes (see Fig. 1), has the lowest capacity,
which ensuring that the classifier learned from training samples will misclassify the
less elements of the test samples originated from the same probability distribution.

x2

x1

γ

Fig. 1. A separable classification problem. The optimal hyperplane is orthogonal to the
shortest line connecting the convex hulls of the two classes, and intersects it half way. There
is a weight vector w and a threshold b such that () 0, >+ bxwy ii . Rescaling w and b such

that the point(s) closest to the hyperplane satisfy 1, =+ bxw i , we obtain a form (w, b) of

the hyperplane with () 1, ≥+ bxwy ii . Note that the margin, measured perpendicularly to the
hyperplane, equals w/1 . To maximize the margin, we thus have to minimize w subject to
() 1, ≥+ bxwy ii [2].

1.3 Maximal margin classifier

The optimization problem to find the optimal w vector and the threshold b is the
following, given a set of linearly separable training samples

)),(...,),,((11 mm yxyxS =

the hyperplane),(∗∗ bw that maximizes the geometric margin.

wwminimize bw ,,

mibxwytosubject ii ...,1,1, =≥+ .

Then the geometric margin can be computed considering that

1, 1 =+ ∗∗ bxw

1, 2 −=+ ∗∗ bxw
then

2)(, 21 =−∗ xxw
rescaling

∗∗

∗

=−
w

xx
w
w 2)(, 21

therefore the margin is

∗
=

w
1γ .

The training patterns lie closest to the hyperplane (see Fig. 1 two balls and one
diamond) are called support vectors, carrying all relevant information about the
classification problem. The number of support vectors, SV are equal or less than the
number of the training patterns, m.

This minimization problem can be transformed into a dual maximization
problem leading to a quadratic programming task, whose solution w has an expansion

∑
=

=
SV

i
ii xvw

1

Consequently, the final decision function is

+= ∑

=

SV

i
ii bxxvsignxf

1
,)(

which depends only on dot products between patterns. This lets us generalize to the
nonlinear case.

1.4 Feature spaces and kernels

The Fig. 2 shows the basic idea of SV machines, which is to map the data into some
other dot space, called the feature space F via nonlinear map,

FRn →:Φ

and perform the above linear algorithm in F. This is only requires the evaluation of
dot products,

)(),(),(vuvuK ΦΦ=

X F

o

o o

x

x

x

Φ

Φ (o)

Φ (o)

Φ (o)

Φ (x)

Φ (x)

Φ (x)

Fig. 2. The idea of SV machines: map the training data nonlinearly into a higher dimensional
feature space via Φ, and construct a separating hyperplane with maximum margin there. This
yields a nonlinear decision boundary in input space. By the use of kernel function, it is
possible to compute the separating hyperplane without explicitly carrying out the map into the
feature space [3].

Clearly, if F is high dimensional, the dot product on the right hand side will be very
expensive to compute. In some cases, however there is a simple kernel that can be
evaluated efficiently. For instance, the polynomial kernel

dvuvuK ,),(=

can be shown to correspond to a map Φ into the space spanned by all products of
exactly d dimensions of nR . For 2=d and 2, Rvu ∈ , for example, we have

)(),(2,2,,
2
2

21

2
1

2
2

21

2
12

2

1

2

12 vu
v

vv
v

u
uu

u

v
v

u
u

vu ΦΦ=

=

=

defining),2,()(2
221

2
1 xxxxx =Φ .

More generally, we can prove that for every kernel that gives rise to a positive
matrix (kernel matrix)),(jiij xxKM = , we can construct a map such that

)(),(),(vuvuK ΦΦ= holds.

1.5 Optimization as a dual quadratic programming problem

Now the dual minimization problem of margin maximization is the following,
consider classifying a set of training samples,

)),(...),,((11 mm yxyxS =

using the feature space implicitly defined by the kernel),(zxK and suppose the
parameters ∗α solve the following quadratic optimization problem,

∑∑
==

 +−=

m

ji
ijjijiji

m

i
i c

xxKyyWminimize
1,1

1),(
2
1)(δαααα

miytosubject i

m

i
ii ...,1,0,0

1

=≥=∑
=

αα .

Let ∗

=

∗ += ∑ bxxKyxf i

m

i
ii),()(

1
α , where ∗b is chosen so that

c
xfy i

ii

∗

−=
α1)(for any

i with 0≠∗
iα .

Then the decision rule given by))((xfsign is equivalent to the hyperplane in
the feature space implicitly defined by the kernel),(zxK , which solves the
optimization problem, where the geometric margin is

2
1

,1
−

∈

∗∗∗

−= ∑

svi
i c

αααγ

where set sv corresponds to indexes i, for which 0≠∗
iα ,

{ }miisv i ...,1;0: =≠= ∗α

Training samples, ix for which svi∈ are called support vectors giving contribution
to the definition of)(xf .

2 Implementation of SVC in Mathematica

2.1 Steps of implementation

The dual optimization problem can be solved conveniently using Mathematica. In this
section, the steps of the implementation of SVC algorithm are shown by solving XOR
problem. The truth table of XOR, using bipolar values for the output, is

Table 1. Truth table of XOR problem

x1 x2 y
0 0 -1
0 1 1
1 0 1
1 1 -1

The input and output data lists are
xym={{0,0},{0,1},{1,0},{1,1}};
zm={-1,1,1,-1};

Let us employ Gaussian kernel with β gain
β=10.;

K[u_,v_]:=Exp[-β (u-v).(u-v)]

The number of the data pairs in the training set, m is
m=Length[zm]

4

Create the objective function)(αW to be maximized, with regularization parameter,
c=5.;

First, we prepare a matrix M, which is an extended form of the kernel matrix,
M=(Table[N[K[xym[[i]],xym[[j]]]],
 {i,1,m},{j,1,m}]+(1/c)IdentityMatrix[m]);

then the objective function can be expressed as,

W= ∑
=

m

1i
αi –(1/2) ∑

=

m

1i
∑
=

m

1j
(zm[[i]]zm[[j]] αi αj M[[i,j]]);

The constrains for the unknown variables are

g=Apply[And,Join[Table[αi ≥0,{i,1,m}],{ ∑
=

m

1i
zm[[i]]αi 0}]];

However the maximization problem is a convex quadratic problem, from practical
reasons to maximize the objective function the built in function NMaximize is
applied. NMaximize implements several algorithms for finding constrained global
optima. The methods are flexible enough to cope with functions that are not
differentiable or continuous, and are not easily trapped by local optima. Possible
settings for the Method option include "RandomSearch", "NelderMead",
"DifferentialEvolution" and "SimulatedAnnealing".

Here we use DifferentialEvolution, which is a genetic algorithm that
maintains a population of specimens, nxx ...,,1 , represented as vectors of real numbers
(“genes”). Every iteration, each ix chooses random integers a, b, and c and constructs
the mate))((cbaii xxxxy −++= γ , where γ is the value of ScalingFactor. Then

ix is mated with iy according to the value of CrossProbability, giving us the
child iz . At this point ix competes against iz for the position of ix in the population.
The default value of SearchPoints is Automatic, which is Min[10*d, 50],
where d is the number of variables.

We need the list of unknown variables α ,
vars=Table[αi,{i,1,m}];

Then the solution of the maximization problem is,
sol=NMaximize[{W,g},vars,Method→DifferentialEvolution]
{1.66679,{α1→0.833396, α2→0.833396, α3→0.833396, α4→0.833396}}

The consistency of this solution can be checked by computing values of b for every
data points. Theoretically, these values should be same for any data points, however,
in general, this is only approximately true.
bdata=Table[((1-αj/c)/zm[[j]]-

 ∑
=

m

1i
zm[[i]]αi K[xym[[i]],xym[[j]]])/.sol[[2]],{j,1,m}]

{-1.89729×10-16, 6.65294×10-17, 3.45251×10-16, 0.}

The value of b can be chosen as the average of these values
b=Apply[Plus,bdata]/m
5.55126×10-17

Then the classifier function is,

f[w_]:=((∑
=

m

1i
zm[[i]]αiK[w,xym[[i]]])+b)/.sol[[2]]

In symbolic form
Clear[x,y]
f[{x,y}]
5.55126×10-17-0.833396 e-10.((-1+x)

2+(-1+y)2) +0.833396 e-10.(x
2+(-1+y)2)

 +0.833396 e-10.((-1+x)
2+y2) -0.833396 e-10.(x

2+y2)

Let us display the contour lines of the continuous classification function,
<<ExtendGraphics`LabelContour`
p=ContourPlot[f[{x,y}], {x, 0, 1},{y,0,1},
 Contours→{-0.5,-0.05,0,0.05,0.5},ContourShading→False,
 PlotPoints→50,DisplayFunction→Identity];
p1=LabelContourLines[p,LabelPlacement→Automatic,
 LabelFont→{"Courier",10},DisplayFunction→Identity];
<<Graphics`MultipleListPlot`
p2=MultipleListPlot[{{0,0},{1,1}},{{0,1},{1,0}},
 SymbolStyle→{Hue[.0],Hue[0.8]},SymbolShape→{PlotSymbol[Box,3],
 PlotSymbol[Star,7]},Frame→True,Axes→False,AspectRatio→1,
 DisplayFunction→Identity];
Show[{p1,p2},DisplayFunction→$DisplayFunction];

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0.5

0.5

0.05

0.05

00

-0.05

-0.05

-0.5

-0.5

Fig. 3. The contour lines of the continuous classification function f(x1, x2) for XOR problem

The discrete classifier, the decision rule using signum function is
Plot3D[Sign[f[{x,y}]],{x,0,1},{y,0,1},PlotRange→All];

0
0.25

0.5
0.75

1 0

0.25

0.5

0.75

1

-1
-0.5

0
0.5
1

0
0.25

0.5
0.75

Fig. 4. The decision rule, sign(f(x1, x2)) for XOR problem

Map[Sign[f[#]]&,xym]
{-1,1,1,-1}

and
zm==%
True

2.2 Mathematica modul for SVC

These steps can be collected in a module, where the vector xm contains the input
vectors (the training set), and the vector ym contains the corresponding scalar output
values (the labels of the training set),
SupportVectorClassifier[xm_,ym_,K_,c_]:=Module[
 {m,n,M,i,j,W,g,vars,sol,bdata,b},
 m=Length[ym];n=Length[xm[[1]]];
 M=Table[K[xm[[i]],xm[[j]]],{i,1,m},{j,1,m}]+(1/c)
 IdentityMatrix[m];

 W= ∑
=

m

1i
αi –(1/2) ∑

=

m

1i
∑
=

m

1j
(ym[[i]]ym[[j]] αi αj M[[i,j]]);

 g=Apply[And,Join[Table[αi ≥0,{i,1,m}],{ ∑
=

m

1i
ym[[i]]αi 0}]];

 vars=Table[αi,{i,1,m}];
 sol=NMaximize[{W,g},vars,Method→DifferentialEvolution][[2]];
 bdata=Table[((1-αj/c)/ym[[j]]-

 ∑
=

m

1i
ym[[i]]αi K[xm[[i]],xm[[j]]])/.sol[[2]],{j,1,m}];

 b=Apply[Plus,bdata]/m;

 {((∑
=

m

1i
ym[[i]]αi K[Table[xj,{j,1,n}],xm[i]]])+b)

 /.sol,vars/.sol}];

The results of this module are the analytic form of the continuous classifier function
and the values of αi 's. Let us check the solution of the XOR problem

SupportVectorClassifier[xym,zm,K,c]

{5.55112×10-17-0.833396 e-10.((-1+x1)
2+(-1+x2)2) +0.833396 e-10.(x1

2+(-1+x2)2)
 +0.833396 e-10.((-1+x1)

2+x22) -0.833396 e-10.(x1
2+x22),

 {0.833396, 0.833396, 0.833396, 0.833396}}

%[[1]]==f[{x1 , x2 }]//Chop
True

3 Two test problems

3.1 Learning a chess board

Let us consider a 2 × 2 chess board. The training points are generated by uniformly
distributed random numbers from the interval [-1,1] × [-1, 1]. The chess board matrix
M={{1,-1},{-1,1}};
p1=ListDensityPlot[M,MeshRange→{{-1,1},{-1,1}},
 DisplayFunction→Identity];

Creating the training set using 50 random samples,
xym={};zm={};
Do[x1=Random[Real,{-0.99,0.99}];x2=Random[Real,{-0.99,0.99}];
 If[x1 x2>0,z=1,z=-1];
 AppendTo[xym,{x1,x2}];AppendTo[zm,z],{k,1,50}];

Preparation data to display them
data=Transpose[Join[Transpose[xym],{zm}]];
data1=Map[Drop[#,-1]&,Select[data,#[[3]]>0&]];
data2=Map[Drop[#,-1]&,Select[data,#[[3]]<0&]];
p2=MultipleListPlot[data1,data2,
 SymbolShape→{PlotSymbol[Triangle,5],
 PlotSymbol[Box,2]},SymbolStyle→{Hue[.7],Hue[.0]},Frame→True,
 AspectRatio→1,DisplayFunction→Identity];

Let us employ the same Gaussian kernel, but now with gain 15=β .

β=15;

employing parameter c = 100,
c=100;

The solution is
F=SupportVectorClassifier[xym,zm,K,c];

This run could take some minutes.
p3= ContourPlot[F[[1]],{x1,-1,1},{x2,-1,1},Contours→{0},
 PlotPoints→100,ContourShading→False,DisplayFunction→Identity];
p4=DensityPlot[Sign[F[[1]]],{x1,-1,1},{x2,-1,1},
 PlotPoints→100,Mesh→False,DisplayFunction→Identity];
Show[GraphicsArray[{Show[{p2,p3}],p1,p4}],
 DisplayFunction→$DisplayFunction];

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

Fig. 5. SVC result from 50 random samples: the functions f(x) with the random samples, the

ideal chess board and sign(f(x))

The SV solution of a larger chess board problem can be found in [3].

3.2 Two intertwined spirals

The two intertwined spirals is a challenging classification benchmark originated from
the field of neural networks [4].

 Parametric equations of the spirals are
x1[t_]:=2 Cos[t] et/10

y1[t_]:=1.5 Sin[t] et/10
x2[t_]:=2.7 Cos[t] et/10
y2[t_]:=2.025 Sin[t] et/10

Generating 26 discrete points for each spiral,
s1=Table[{x1[t],y1[t]},{t, π, 3.5π, 2.5π/25}];
s2=Table[{x2[t],y2[t]},{t, -π/2, 2.5π, 3.0π/25}];

then displaying these points,
S1=ListPlot[s1,PlotStyle→{RGBColor[1,0,0],PointSize[0.02]},
 AspectRatio→1,DisplayFunction→Identity];
S2=ListPlot[s2,PlotStyle→{RGBColor[0,0,1],PointSize[0.015]},
 AspectRatio→1,DisplayFunction→Identity];
pspiral=Show[{S1,S2},DisplayFunction→$DisplayFunction];

-4 -2 2 4

-4

-2

2

4

Fig. 6. Two intertwined spirals represented by 26 points each

Creating the teaching set, putting these points into one list
xym=Join[s1,s2];

Generating the labels of the samples,
Generating the labels of the samples,
zm=Join[Table[1.,{26}],Table[-1.,{26}]];
Length[zm]
52
Dimensions[xym]
{52,2}

Applying wavelet kernel [5] with parameter a = 1.8, in case of dimension n = 2
n=2;a=1.8;

K[u_,v_]:=∏
=

n

i 1
(Cos[1.75(u[[i]]-v[[i]])/a] Exp[-(u[[i]]-v[[i]])2/2a2])

and with parameter c = 100
c=100.;

The solution is
F=SupportVectorClassifier[xym,zm,K,c];

This run could take some minutes.
psvc1=ContourPlot[F[[1]],{x1,-7,7},{x2,-7,7},Contours→{0},
 PlotPoints→50,AspectRatio→1,ContourShading→False,
 DisplayFunction→Identity];
Show[{pspiral,psvc1},DisplayFunction→$DisplayFunction];

-6 -4 -2 2 4 6

-6

-4

-2

2

4

6

Fig. 7. Classification results of SVC with the nonlinear decision boundary

The continuous classification function and the decision rule can be displayed in 3D,
too
P1=Plot3D[F[[1]],{x1,-7,7},{x2,-7,7},PlotRange→All,
 PlotPoints→{30,30},DisplayFunction→Identity];

P2=Plot3D[Sign[F[[1]]],{x1,-7,7},{x2,-7,7},PlotRange→All,

 PlotPoints→{40,40},DisplayFunction→Identity];
Show[GraphicsArray[{P1,P2}],DisplayFunction→$DisplayFunction];

-5
0

5
-5

0

5
-4
-2
0
2

-5
0

5

-5
0

5
-5

0

5
-1

-0.5
0

0.5
1

-5
0

5

Fig. 8. Classification function and the corresponding decision rule

4 Image classification

Classification of digital images in order to separate different categories of land cover
types, like urban area, water, vegetation, agricultural area etc. and to carry out
thematic change analysis is a frequent task in geoscience and remote sensing. Many
different methods are used, traditional maximum-likelihood, k- nearest neighbor, rule
based (classification and regression tree), supervised and unsupervised neural
network, fuzzy logic and neuro-fuzzy and even support vector classifiers with
Gaussian -kernel.

SVC were used for classification for land cover using polarimetric synthetic
aperture radar (SAR) images, and for classification for clouds, snow and ice, however
with usual kernels, like RBF (Radial Basis Function). In this illustrative example, we
use KMOD type kernel for synthetic image data.

Let us load the Image Processing Application of Mathematica,
<<ImageProcessing`
img=ImageRead["F:\ImageProcessing\Syntetic.JPG"];

Let us consider a relatively small image of synthetic data,
ImageDimensions[img]
{201,301}
Show[Graphics[img]];

Fig. 9. Digital image of synthetic data

4.1 Binary classification

We should like to filter out pixels being different from yellowy type ones. For this
task an SVM binary classifier can be developed. Pixels from the three different
categories: yellowy, brownish and bluish spots are picked up randomly and their RGB
values are stored in three different files.

We have ten yellowish pixels,
rgb1=ReadList["F:\ImageProcessing\yellow.dat",{Number,Number,Number}];
Show[Graphics[RasterArray[{RGBColor[#[[1]],#[[2]],#[[3]]]&/@rgb1}]]];

Fig. 10. Colors (grayscale) of the ten yellowish training data

ten brown pixels,
rgb2=ReadList["F:\ImageProcessing\dark.dat",{Number,Number,Number}];
Show[Graphics[RasterArray[{RGBColor[#[[1]],#[[2]],#[[3]]]&/@rgb2}]]];

Fig. 11. Colors (grayscale) of the ten brownish traning data

and ten bluish pixels,
rgb3=ReadList["F:\ImageProcessing\light.dat",{Number,Number,Number}];
Show[Graphics[RasterArray[{RGBColor[#[[1]],#[[2]],#[[3]]]&/@rgb3}]]];

Fig. 12. Colors (grayscale) of the ten bluish training data

These three sets are joined building the input for the classifier,
xym=Join[rgb1,rgb2,rgb3];

The first ten elements are labeled with 1, and the remaining elements with -1,
zm=Join[Table[1,{10}],Table[-1,{20}]];

Now, we shall employ a Kernel with MOderate Decreasing (KMOD) having two
parameters,

γ=0.5;σ=3.;

The motivation of the employment of this kernel can be explained as it follows. In
most commonly used kernels (eg. RBF), points very close to each other are strongly
correlated whereas points far apart have uncorrelated images in the augmented space.
The aim is, to force the images of the original points to be linearly separable in the
augmented space. In order to get such a behavior, a kernel must turn very close points
from the original space into weakly correlated elements (as weak as possible) while
still maintaining the closeness information from vanishing. To achieve this tradeoff,
we need the following couple features: a quick decrease in the neighborhood of zero
and a moderate decrease towards infinity. The RBF kernel may satisfy correctly the
first requirement but not the second, whereas the exponential RBF does not respond
correctly for both of the requirements. Alternatively, the KMOD is proposed [7],
whose analytic expression is,
K[u_,v_]:=Exp[γ/(Norm[u-v]2+σ2)]-1

In case of n =1
Plot3D[Exp[γ/(Abs[u-v]2+σ2)]-1,{u,0,1},{v,0,1}];

0
0.25

0.5

0.75

1 0

0.25

0.5

0.75

1

0.052

0.054

0.056

0
0.25

0.5

0.75

Fig. 13. Kernel with MOderate Decreasing (KMOD)

The value of the regularization parameter is,
c=100;

Training the continuous classifier function,
F1=SupportVectorClassifier[xym,zm,K,c];

we get its analytical form,
Short[F1[[1]],15]
-0.108208-91.611(-1+e0.5/(9.+Abs[-0.352941+x1]

2+Abs[-0.639216+x2]2+Abs[-0.596078+x3]2))-
 -43.766(-1+e0.5/(9.+Abs[-0.34902+x1]

2+Abs[-0.627451+x2]2+Abs[-0.596078+x3]2))+
 +<<30>>+
 +0.0(-1+e0.5/(9.+Abs[-0.25098+x1]

2+Abs[-0.262745+x2]2+Abs[-0.219608+x3]2))+
 +0.0(-1+e0.5/(9.+Abs[-0.235294+x1]

2+Abs[-0.247059+x2]2+Abs[-0.211765+x3]2))

The RGB values of the original image vector
xx=Flatten[RawImageData[img],1];

and its dimensions
nd=Dimensions[xx]
{60501,3}

Now, the discrete classifier is applied,
decision=Map[Sign[F1[[1]]]/.{x1→#[[1]],x2→#[[2]],x3→#[[3]]}&,xx/255];

We shall use colors for yellowish and not yellowish spots, with RGB values pathes
and others, respectively,
patches={0.5,0.5,0};others={1,0.5,0.75};

The RGB value of pixels classified as yellowish (labeled with 1 by the classifier) will
be overwritten by the RGB values of pathes, and the others pixels (labeled with −1)
by the RGB values of others,
Do[If[decision[[i]]==1,xx[[i]]=patches,xx[[i]]=others],
 {i,1,nd[[1]]}];

We partition the RGB image vector to form a matrix, and transform this image matrix
into an image object,
U=ToRGBColor[Partition[xx,301]];

Here are the original and the filtered image,
Show[GraphicsArray[{Graphics[img],Graphics[U]}]];

Fig. 14. The original and the filtered image

The results shows the data generalization ability of SVC, which was trained with only
30 pixels, and successfully represents more than 60 thousands.

4.2 Multi-class classification

Support Vector Classifiers were originally designed for binary classification. How to
effectively extend it for multi-class classification is still an on-going research issue.
Currently there are two types of approaches for multi-class SVC. One is by
constructing and combining several binary classifiers, while the other is by directly
considering all data in one optimization formulation. Methods of this latest category
are called all-together methods.

Here we employ the one − against − all method [8] belonging to the first
category, the combination of several binary classifiers. It constructs k SVC models,
which means k decision functions, where k is the number of classes. The ith SVC is
trained with all of the examples in the ith class with positive labels, and all other
examples with negative labels. Thus given m training data),(,...),,(11 mm yxyx , where

miRx n
i ...,1, =∈ , and },1{ kyi ∈ . We say ix is in the class which has the largest

value of the decision function. In our case k = 3, m = 201 × 301 = 60501 and n = 3.
Let us define the list of labels for the second class,

zm=Join[Table[-1,{10}],Table[1,{10}],Table[-1,{10}]];

The second decision function is
F2=SupportVectorClassifier[xym,zm,K,c];

in symbolic form
Short[F2[[1]],15]
-0.0635132-60.3727(-1+e0.5/(9.+Abs[-0.352941+x1]

2+Abs[-0.639216+x2]2+Abs[-0.596078+x3]2))-
 -32.4338(-1+e0.5/(9.+Abs[-0.34902+x1]

2+Abs[-0.627451+x2]2+Abs[-0.596078+x3]2))+
 +<<27>>+
 +42.0541(-1+e0.5/(9.+Abs[-0.25098+x1]

2+Abs[-0.262745+x2]2+Abs[-0.219608+x3]2))+
 +37.0146(-1+e0.5/(9.+Abs[-0.235294+x1]

2+Abs[-0.247059+x2]2+Abs[-0.211765+x3]2))

The third class has the list of labels as follows
zm=Join[Table[-1,{20}],Table[1,{10}]];

Then the third decision function is
F3=SupportVectorClassifier[xym,zm,K,c];

in symbolic form
Short[F3[[1]],15]
-0.874528+157635(-1+e0.5/(9.+Abs[-0.352941+x1]

2+Abs[-0.639216+x2]2+Abs[-0.596078+x3]2))+
 +78.926(-1+e0.5/(9.+Abs[-0.34902+x1]

2+Abs[-0.627451+x2]2+Abs[-0.596078+x3]2))-
 -51.2964(-1+e0.5/(9.+Abs[-0.811765+<<1>>]

2+Abs[<<1>>]2+Abs[-0.588235+x3]2))+
 +81.8819(-1+e0.5/(9.+<<1>>

2+<<1>>2+Abs[<<1>>]2))
 +<<32>>

Now we restore the RGB values of the original image vector, which was overwritten
during the binary classification,
xx=Flatten[RawImageData[img],1];

Then applying the three different continuous classifiers to the pixel vector of the
image

decision1=Map[F1[[1]]/.{x1→#[[1]],x2→#[[2]],x3→#[[3]]}&,xx/255];
decision2=Map[F2[[1]]/.{x1→#[[1]],x2→#[[2]],x3→#[[3]]}&,xx/255];
decision3=Map[F3[[1]]/.{x1→#[[1]],x2→#[[2]],x3→#[[3]]}&,xx/255];

We construct a list having elements as list referring to a pixel, and containing three
values, the values resulted by the three different classifiers applied to the pixels,
d123=Transpose[{decision1,decision2,decision3}];

The pixel will be assigned to the class, for which it has the largest value of the
decision functions,
d=Map[Position[#,Max[#]]&,d123]//Flatten;

Let us assign the following three colors to the different classes,
class1={1,0,0};class2={0,1,0};class3={0,0,1};

We paint each pixel with the color of the proper class,
Do[Which[d[[i]]==1,xx[[i]]=class1,d[[i]]==2,xx[[i]]=class2,
 d[[i]]==3,xx[[i]]=class3],{i,1,nd[[1]]}];

then partition the RGB image vector to form an image matrix, and transform this
image matrix into an image object,
U=ToRGBColor[Partition[xx,301]];

Here are the original and the three-class classified image,
Show[GraphicsArray[{Graphics[img],Graphics[U]}]];

Fig. 15. The original and the three-class classified image

5 Conclusions

Support vector classification method has been developed in software Mathematica
and the method is ready to use for different technical applications. The step by step
implementation of the support vector classification algorithm in Mathematica was
presented and explained here.

Support vector classification method provides a very promising application
possibility in photogrammetry and petrological microscopy. One of the most
important applications of this method in remote sensing is the filtering of airborne
digital land images by pixel classification.

The Mathematica notebook form of this paper is available on Web [9].

Acknowledgements

Our investigations are supported by the National Scientific Research Found (OTKA
T-037929). The authors wish to thank professor D. Holnapy for his valuable
comments.

References

[1] Berthold M, Hand D J /Eds./ (2003): Intelligent Data Analysis, An Introduction. Springer Verlag.
[2] Hearst M A (1998): Support Vector Machines, IEEE Intelligent Systems, pp. 18 -28.
[3] Cristianini N, Shawe-Taylor J (2003): An introduction to Support Vector Machines and other

kernel - based learning methods. Cambridge, University Press.
[4] Juillé H, Pollack J B (1996): Co-evolving intertwined spirals, in Proc. of the 5th. Ann.Conf. on

Evolutionary Programming, San Diego, USA, pp.461-468.
[5] Zhang L, Zhou W, Jiao L (2004): Wavelet Support Vector Machine, IEEE Trans. Systems, Man

and Cybernetics - Part B: Cybernetics, Vol. 4. No.1. pp. 34 -39, Febr. 2004.
[6] Wavelet Explorer with Mathematica, Mathematica Application Package, Wolfram Research Inc.

2003.
[7] Remaki L, Cheriet M (2000): Kcs-new kernel family with compact support scale space. IEEE

Transactions On Image Processing, 9 (6): 970, June 2000.
[8] Bottou L, et al (1994): Comparison of classifier methods: a case study in handwriting digit

recognition. In Int. Conf. on Pattern Recognition, IEEE Computer Society Press, pp. 77-87.
[9] Paláncz B: Support Vector Classifier, e-publication, Wolfram Research Inc., Mathematica

Information Center, http://library.wolfram.com/infocenter/MathSource/5293/

* * *

Paláncz B, Völgyesi L. (2004) Support Vector Classifier via Mathematica. Periodica
Polytechnica Civ. Eng, Vol. 48, Nr. 1-2. pp. 15-37.

Dr. Lajos VÖLGYESI, Department of Geodesy and Surveying, Budapest University of
Technology and Economics, H-1521 Budapest, Hungary, Műegyetem rkp. 3.
Web: http://sci.fgt.bme.hu/volgyesi E-mail: volgyesi@eik.bme.hu

