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Abstract 
 

In this case study a Support Vector Classifier function has been developed in Mathematica. Starting 
with a brief summary of support vector classification method, the step by step implementation of the 
classification algorithm in Mathematica is presented and explained. To check our function, two test 
problems, learning a chess board and classification of two intertwined spirals are solved. In addition an 
application to filtering of airborne digital land image by pixel classification is demonstrated using a 
new SVM kernel family, the KMOD, a kernel with moderate decreasing. 
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Introduction 
 
Kernel Methods are relatively new family of algorithms that presents a series of 
useful features for pattern analysis in datasets. Kernel Methods combine the 
simplicity and computational efficiency of linear algorithms, such as the perception 
algorithm or ridge regression, with flexibility of nonlinear systems, such as for 
example neural networks, and rigour of statistical approaches such as regularization 
methods in multivariate statistics. As a result of the special way they represent 
functions, these algorithms typically reduce the learning step to convex optimization 
problem that can always be solved in polynomial time, avoiding the problem of local 
minima typical of neural networks, decision trees and other nonlinear approaches [1]. 
 
 

1 Support Vector Classification 
 

1.1 Binary classification 
 
In case of binary classification, we try to estimate a real-valued function f: 

RRX n →⊆  using training data, that is n - dimensional patterns ix  and class labels 
}1,1{−∈iy  

}1,1{)),(...,),,(( 11 −×∈ n
mm Ryxyx  

such that f will correctly classify new examples (x, y) − that is, f(x) = y for examples 
(x, y), which were generated from the same underlying probability distribution P(x,y) 
as the training data. If we put no restriction on the class of functions that we choose 



 

our estimate f from, however, even a function that does well on the training data − for 
example by satisfying ii yxf =)(  for i = 1...m − need not generalize well to unseen 
examples. Suppose we know nothing additional about f (for example about its 
smoothness), then the values on the training patterns carry no information whatsoever 
about values on novel patterns. Hence learning is impossible, and minimizing the 
training error does not imply a small expected test error. 
 Statistical learning theory, or Vapnik-Chervonenkis theory, shows that is 
crucial to restrict the class of functions that the learning machine can implement to 
one with capacity that is suitable for the amount of available training data. 
 
 

1.2 Optimal hyperplane classifier 
 
To design learning algorithms, we thus must come up with a class of functions whose 
capacity can be computed. SV classifiers are based on the class of hyperplanes 

RbRwbxw n ∈∈=+ ,0,  

corresponding to decision functions 

),()( bxwsignxf += . 

We can show that the optimal hyperplane, defined as the one with the maximal 
margin of separation between the two classes (see Fig. 1), has the lowest capacity, 
which ensuring that the classifier learned from training samples will misclassify the 
less elements of the test samples originated from the same probability distribution. 
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Fig. 1. A separable classification problem. The optimal hyperplane is orthogonal to the 
shortest line connecting the convex hulls of the two classes, and intersects it half way. There 
is a weight vector w and a threshold b such that ( ) 0, >+ bxwy ii . Rescaling w and b such 

that the point(s) closest to the hyperplane satisfy 1, =+ bxw i , we obtain a form (w, b) of 

the hyperplane with ( ) 1, ≥+ bxwy ii . Note that the margin, measured perpendicularly to the 
hyperplane, equals w/1 . To maximize the margin, we thus have to minimize w  subject to 
( ) 1, ≥+ bxwy ii   [2]. 

 
 



 

1.3 Maximal margin classifier 
 

The optimization problem to find the optimal w vector and the threshold b is the 
following, given a set of linearly separable training samples 

)),(...,),,(( 11 mm yxyxS =  

the hyperplane ),( ∗∗ bw  that maximizes the geometric margin. 

wwminimize bw ,,  

mibxwytosubject ii ...,1,1, =≥+ . 

Then the geometric margin can be computed considering that 

1, 1 =+ ∗∗ bxw  

1, 2 −=+ ∗∗ bxw  
then 

2)(, 21 =−∗ xxw  
rescaling 
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therefore the margin is 

∗
=

w
1γ . 

The training patterns lie closest to the hyperplane  (see Fig. 1 two balls and one 
diamond) are called support vectors, carrying all relevant information about the 
classification problem. The number of support vectors, SV are equal or less than the 
number of the training patterns, m. 

This minimization problem can be transformed into a dual maximization 
problem leading to a quadratic programming task, whose solution w has an expansion 
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Consequently, the final decision function is 
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which depends only on dot products between patterns. This lets us generalize to the 
nonlinear case. 
 
 

1.4 Feature spaces and kernels 
 
The Fig. 2 shows the basic idea of SV machines, which is to map the data into some 
other dot space, called the feature space F via nonlinear map, 

FRn →:Φ  



 

and perform the above linear algorithm in F. This is only requires the evaluation of 
dot products, 

)(),(),( vuvuK ΦΦ=  
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Fig. 2. The idea of SV machines: map the training data nonlinearly into a higher dimensional 
feature space via Φ, and construct a separating hyperplane with maximum margin there. This 
yields a nonlinear decision boundary in input space. By the use of kernel function, it is 
possible to compute the separating hyperplane without explicitly carrying out the map into the 
feature space [3]. 
 
Clearly, if F is high dimensional, the dot product on the right hand side will be very 
expensive to compute. In some cases, however there is a simple kernel that can be 
evaluated efficiently. For instance, the polynomial kernel 

dvuvuK ,),( =  

can be shown to correspond to a map Φ  into the space spanned by all products of 
exactly d dimensions of  nR . For 2=d  and 2, Rvu ∈ , for example, we have 
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More generally, we can prove that for every kernel that gives rise to a positive 
matrix (kernel matrix) ),( jiij xxKM = , we can construct a map such that  

)(),(),( vuvuK ΦΦ=  holds. 
 
 

1.5  Optimization as a dual quadratic programming problem 
 
Now the dual minimization problem of margin maximization is the following, 
consider classifying a set of training samples, 

)),(...),,(( 11 mm yxyxS =  



 

using the feature space implicitly defined by the kernel ),( zxK  and suppose the 
parameters ∗α  solve the following quadratic optimization problem, 
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Then the decision rule given by ))(( xfsign  is equivalent to the hyperplane in 
the feature space implicitly defined by the kernel ),( zxK , which solves the 
optimization problem, where the geometric margin is 
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where set sv corresponds to indexes i, for which 0≠∗
iα , 

{ }miisv i ...,1;0: =≠= ∗α  

Training samples, ix  for which svi∈  are called support vectors giving contribution 
to the definition of )(xf . 
 
 

2 Implementation of SVC in Mathematica 
 

2.1 Steps of implementation 
 
The dual optimization problem can be solved conveniently using Mathematica. In this 
section, the steps of the implementation of SVC algorithm are shown by solving XOR 
problem. The truth table of XOR, using bipolar values for the output, is 

Table 1. Truth table of XOR problem 

x1 x2 y 
0 0 -1 
0 1 1 
1 0 1 
1 1 -1 

 
The input and output data lists are 
xym={{0,0},{0,1},{1,0},{1,1}}; 
zm={-1,1,1,-1}; 

Let us employ Gaussian kernel with β  gain 
β=10.; 



 

K[u_,v_]:=Exp[-β (u-v).(u-v)] 

The number of the data pairs in the training set, m is 
m=Length[zm] 

4 

Create the objective function )(αW  to be maximized, with regularization parameter,  
c=5.; 

First, we prepare a matrix M, which is an extended form of the kernel matrix, 
M=(Table[N[K[xym[[i]],xym[[j]]]], 
   {i,1,m},{j,1,m}]+(1/c)IdentityMatrix[m]); 

then the objective function can be expressed as, 

W= ∑
=

m

1i
αi –(1/2) ∑

=

m

1i
∑
=

m

1j
(zm[[i]]zm[[j]] αi αj M[[i,j]]); 

The constrains for the unknown variables are 

g=Apply[And,Join[Table[αi ≥0,{i,1,m}],{ ∑
=

m

1i
zm[[i]]αi 0}]]; 

However the maximization problem is a convex quadratic problem, from practical 
reasons to maximize the objective function the built in function NMaximize is 
applied. NMaximize implements several algorithms for finding constrained global 
optima. The methods are flexible enough to cope with functions that are not 
differentiable or continuous, and are not easily trapped by local optima. Possible 
settings for the Method option include "RandomSearch", "NelderMead", 
"DifferentialEvolution" and "SimulatedAnnealing". 

Here we use  DifferentialEvolution, which is a genetic algorithm that 
maintains a population of specimens, nxx ...,,1 , represented as vectors of real numbers 
(“genes”). Every iteration, each ix  chooses random integers a, b, and c and constructs 
the mate ))(( cbaii xxxxy −++= γ , where γ is the value of ScalingFactor. Then 

ix  is mated with iy  according to the value of CrossProbability, giving us the 
child iz . At this point ix  competes against iz  for the position of  ix  in the population. 
The default value of SearchPoints is Automatic, which is Min[10*d, 50], 
where d is the number of variables. 

We need the list of unknown variables α , 
vars=Table[αi,{i,1,m}]; 

Then the solution of the maximization problem is, 
sol=NMaximize[{W,g},vars,Method→DifferentialEvolution] 
{1.66679,{α1→0.833396, α2→0.833396, α3→0.833396, α4→0.833396}} 

The consistency of this solution can be checked by computing values of b for every 
data points. Theoretically, these values should be same for any data points, however, 
in general, this is only approximately true. 
bdata=Table[((1-αj/c)/zm[[j]]- 

      ∑
=

m

1i
zm[[i]]αi K[xym[[i]],xym[[j]]])/.sol[[2]],{j,1,m}] 



 

{-1.89729×10-16, 6.65294×10-17, 3.45251×10-16, 0.} 

The value of b can be chosen as the average of these values 
b=Apply[Plus,bdata]/m 
5.55126×10-17 

Then the classifier function is, 

f[w_]:=(( ∑
=

m

1i
zm[[i]]αiK[w,xym[[i]]])+b)/.sol[[2]] 

In symbolic form 
Clear[x,y] 
f[{x,y}] 
5.55126×10-17-0.833396 e-10.((-1+x)

2+(-1+y)2) +0.833396 e-10.(x
2+(-1+y)2) 

            +0.833396 e-10.((-1+x)
2+y2) -0.833396 e-10.(x

2+y2) 

Let us display the contour lines of the continuous classification function, 
<<ExtendGraphics`LabelContour` 
p=ContourPlot[f[{x,y}], {x, 0, 1},{y,0,1}, 
  Contours→{-0.5,-0.05,0,0.05,0.5},ContourShading→False, 
  PlotPoints→50,DisplayFunction→Identity]; 
p1=LabelContourLines[p,LabelPlacement→Automatic, 
  LabelFont→{"Courier",10},DisplayFunction→Identity]; 
<<Graphics`MultipleListPlot` 
p2=MultipleListPlot[{{0,0},{1,1}},{{0,1},{1,0}}, 
  SymbolStyle→{Hue[.0],Hue[0.8]},SymbolShape→{PlotSymbol[Box,3], 
  PlotSymbol[Star,7]},Frame→True,Axes→False,AspectRatio→1, 
  DisplayFunction→Identity]; 
Show[{p1,p2},DisplayFunction→$DisplayFunction]; 
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Fig. 3. The contour lines of the continuous classification function f(x1, x2) for XOR problem 

 
The discrete classifier, the decision rule using signum function is 
Plot3D[Sign[f[{x,y}]],{x,0,1},{y,0,1},PlotRange→All]; 
 



 

0
0.25

0.5
0.75

1 0

0.25

0.5

0.75

1

-1
-0.5

0
0.5
1

0
0.25

0.5
0.75

 
Fig. 4. The decision rule, sign(f(x1, x2)) for XOR problem 

 
Map[Sign[f[#]]&,xym] 
{-1,1,1,-1} 

and 
zm==% 
True 
 
 

2.2 Mathematica modul for SVC 
 
These steps can be collected in a module, where the vector xm contains the input 
vectors (the training set), and the vector ym contains the corresponding scalar output 
values (the labels of the training set), 
SupportVectorClassifier[xm_,ym_,K_,c_]:=Module[ 
    {m,n,M,i,j,W,g,vars,sol,bdata,b}, 
    m=Length[ym];n=Length[xm[[1]]]; 
    M=Table[K[xm[[i]],xm[[j]]],{i,1,m},{j,1,m}]+(1/c) 
    IdentityMatrix[m]; 

    W= ∑
=

m

1i
αi –(1/2) ∑

=

m

1i
∑
=

m

1j
(ym[[i]]ym[[j]] αi αj M[[i,j]]); 

    g=Apply[And,Join[Table[αi ≥0,{i,1,m}],{ ∑
=

m

1i
ym[[i]]αi 0}]]; 

    vars=Table[αi,{i,1,m}]; 
    sol=NMaximize[{W,g},vars,Method→DifferentialEvolution][[2]]; 
    bdata=Table[((1-αj/c)/ym[[j]]- 

          ∑
=

m

1i
ym[[i]]αi K[xm[[i]],xm[[j]]])/.sol[[2]],{j,1,m}]; 

    b=Apply[Plus,bdata]/m; 

    {(( ∑
=

m

1i
ym[[i]]αi K[Table[xj,{j,1,n}],xm[i]]])+b) 

          /.sol,vars/.sol}]; 

The results of this module are the analytic form of the continuous classifier function 
and the values of  αi 's. Let us check the solution of the XOR problem 

SupportVectorClassifier[xym,zm,K,c] 



 

{5.55112×10-17-0.833396 e-10.((-1+x1)
2+(-1+x2)2) +0.833396 e-10.(x1

2+(-1+x2)2) 
   +0.833396 e-10.((-1+x1)

2+x22) -0.833396 e-10.(x1
2+x22), 

   {0.833396, 0.833396, 0.833396, 0.833396}} 

%[[1]]==f[{x1 , x2 }]//Chop 
True 
 
 

3 Two test problems 
 

3.1 Learning a chess board 
 
Let us consider a 2 × 2 chess board. The training points are generated by uniformly 
distributed random numbers from the interval [-1,1] × [-1, 1].  The chess board matrix 
M={{1,-1},{-1,1}}; 
p1=ListDensityPlot[M,MeshRange→{{-1,1},{-1,1}}, 
   DisplayFunction→Identity]; 

Creating the training set using 50 random samples, 
xym={};zm={}; 
Do[x1=Random[Real,{-0.99,0.99}];x2=Random[Real,{-0.99,0.99}]; 
  If[x1 x2>0,z=1,z=-1]; 
    AppendTo[xym,{x1,x2}];AppendTo[zm,z],{k,1,50}]; 

Preparation data to display them 
data=Transpose[Join[Transpose[xym],{zm}]]; 
data1=Map[Drop[#,-1]&,Select[data,#[[3]]>0&]]; 
data2=Map[Drop[#,-1]&,Select[data,#[[3]]<0&]]; 
p2=MultipleListPlot[data1,data2, 
  SymbolShape→{PlotSymbol[Triangle,5], 
  PlotSymbol[Box,2]},SymbolStyle→{Hue[.7],Hue[.0]},Frame→True, 
  AspectRatio→1,DisplayFunction→Identity]; 

Let us employ the same Gaussian kernel, but now with gain 15=β . 

β=15; 

employing parameter c = 100, 
c=100; 

The solution is 
F=SupportVectorClassifier[xym,zm,K,c]; 

This run could take some minutes. 
p3= ContourPlot[F[[1]],{x1,-1,1},{x2,-1,1},Contours→{0}, 
   PlotPoints→100,ContourShading→False,DisplayFunction→Identity]; 
p4=DensityPlot[Sign[F[[1]]],{x1,-1,1},{x2,-1,1}, 
   PlotPoints→100,Mesh→False,DisplayFunction→Identity]; 
Show[GraphicsArray[{Show[{p2,p3}],p1,p4}], 
   DisplayFunction→$DisplayFunction]; 
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Fig. 5. SVC result from 50 random samples: the functions f(x) with the random samples, the 

ideal chess board and sign(f(x)) 
 
The SV solution of a larger chess board problem can be found in [3]. 
 
 

3.2 Two intertwined spirals 
 
The two intertwined spirals is a challenging classification benchmark originated from 
the field of neural networks [4]. 

 Parametric equations of the spirals are 
x1[t_]:=2 Cos[t] et/10 

y1[t_]:=1.5 Sin[t] et/10 
x2[t_]:=2.7 Cos[t] et/10 
y2[t_]:=2.025 Sin[t] et/10 

Generating 26 discrete points for each spiral, 
s1=Table[{x1[t],y1[t]},{t, π, 3.5π, 2.5π/25}]; 
s2=Table[{x2[t],y2[t]},{t, -π/2, 2.5π, 3.0π/25}]; 

then displaying these points, 
S1=ListPlot[s1,PlotStyle→{RGBColor[1,0,0],PointSize[0.02]}, 
   AspectRatio→1,DisplayFunction→Identity]; 
S2=ListPlot[s2,PlotStyle→{RGBColor[0,0,1],PointSize[0.015]}, 
   AspectRatio→1,DisplayFunction→Identity]; 
pspiral=Show[{S1,S2},DisplayFunction→$DisplayFunction]; 
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Fig. 6. Two intertwined spirals represented by 26 points each 

 



 

Creating the teaching set, putting these points into one list 
xym=Join[s1,s2]; 

Generating the labels of the samples, 
Generating the labels of the samples, 
zm=Join[Table[1.,{26}],Table[-1.,{26}]]; 
Length[zm] 
52 
Dimensions[xym] 
{52,2} 

Applying  wavelet kernel [5] with parameter a = 1.8,  in case of  dimension  n = 2 
n=2;a=1.8; 

K[u_,v_]:=∏
=

n

i 1
(Cos[1.75(u[[i]]-v[[i]])/a] Exp[-(u[[i]]-v[[i]])2/2a2]) 

and with parameter c = 100 
c=100.; 

The solution is 
F=SupportVectorClassifier[xym,zm,K,c]; 

This run could take some minutes. 
psvc1=ContourPlot[F[[1]],{x1,-7,7},{x2,-7,7},Contours→{0}, 
      PlotPoints→50,AspectRatio→1,ContourShading→False, 
      DisplayFunction→Identity]; 
Show[{pspiral,psvc1},DisplayFunction→$DisplayFunction]; 
 

-6 -4 -2 2 4 6

-6

-4

-2

2

4

6

 
 

Fig. 7. Classification results of SVC with the nonlinear decision boundary 
 
 
The continuous classification function and the decision rule can be displayed in 3D, 
too 
P1=Plot3D[F[[1]],{x1,-7,7},{x2,-7,7},PlotRange→All, 
   PlotPoints→{30,30},DisplayFunction→Identity]; 
 

P2=Plot3D[Sign[F[[1]]],{x1,-7,7},{x2,-7,7},PlotRange→All, 



 

   PlotPoints→{40,40},DisplayFunction→Identity]; 
Show[GraphicsArray[{P1,P2}],DisplayFunction→$DisplayFunction]; 
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Fig. 8. Classification function and the corresponding decision rule 

 
 
 

4 Image classification 
 
Classification of digital images in order to separate different categories of land cover 
types, like urban area, water, vegetation, agricultural area etc. and to carry out 
thematic change analysis is a frequent task in geoscience and remote sensing. Many 
different methods are used, traditional maximum-likelihood, k- nearest neighbor, rule 
based (classification and regression tree), supervised and unsupervised neural 
network, fuzzy logic and neuro-fuzzy and even support vector classifiers with 
Gaussian -kernel.  

SVC were used for classification for land cover using polarimetric synthetic 
aperture radar (SAR) images, and for classification for clouds, snow and ice, however 
with usual kernels, like RBF (Radial Basis Function). In this illustrative example, we 
use KMOD type kernel for synthetic image data.  

Let us load the Image Processing Application of Mathematica, 
<<ImageProcessing` 
img=ImageRead["F:\ImageProcessing\Syntetic.JPG"]; 

Let us consider a relatively small image of synthetic data, 
ImageDimensions[img] 
{201,301} 
Show[Graphics[img]]; 
 



 

 
Fig. 9. Digital image of synthetic data 

 
 

4.1 Binary classification 
 
We should like to filter out pixels being different from yellowy type ones. For this 
task an SVM binary classifier can be developed. Pixels from the three different 
categories: yellowy, brownish and bluish spots are picked up randomly and their RGB 
values are stored in three different files. 

We have ten yellowish pixels, 
rgb1=ReadList["F:\ImageProcessing\yellow.dat",{Number,Number,Number}]; 
Show[Graphics[RasterArray[{RGBColor[#[[1]],#[[2]],#[[3]]]&/@rgb1}]]]; 
 

 
Fig. 10. Colors (grayscale) of the ten yellowish training data 

 
ten brown pixels, 
rgb2=ReadList["F:\ImageProcessing\dark.dat",{Number,Number,Number}]; 
Show[Graphics[RasterArray[{RGBColor[#[[1]],#[[2]],#[[3]]]&/@rgb2}]]]; 
 

 
Fig. 11. Colors (grayscale) of the ten brownish traning data 

 
and ten bluish pixels, 
rgb3=ReadList["F:\ImageProcessing\light.dat",{Number,Number,Number}]; 
Show[Graphics[RasterArray[{RGBColor[#[[1]],#[[2]],#[[3]]]&/@rgb3}]]]; 
 

 
Fig. 12. Colors (grayscale) of the ten bluish training data 



 

 
These three sets are joined building the input for the classifier, 
xym=Join[rgb1,rgb2,rgb3]; 

The first ten elements are labeled with 1, and the remaining elements with -1, 
zm=Join[Table[1,{10}],Table[-1,{20}]]; 

Now, we shall employ a Kernel with MOderate Decreasing (KMOD) having two 
parameters, 

γ=0.5;σ=3.; 

The motivation of the employment of this kernel can be explained as it follows. In 
most commonly used kernels (eg. RBF), points very close to each other are strongly 
correlated whereas points far apart have uncorrelated images in the augmented space. 
The aim is, to force the images of the original points to be linearly separable in the 
augmented space. In order to get such a behavior, a kernel must turn very close points 
from the original space into weakly correlated elements (as weak as possible) while 
still maintaining the closeness information from vanishing. To achieve this tradeoff, 
we need the following couple features: a quick decrease in the neighborhood of zero 
and a moderate decrease towards infinity. The RBF kernel may satisfy correctly the 
first requirement but not the second, whereas the exponential RBF does not respond 
correctly for both of the requirements. Alternatively, the KMOD is proposed [7], 
whose analytic expression is, 
K[u_,v_]:=Exp[γ/(Norm[u-v]2+σ2)]-1 

In case of n =1 
Plot3D[ Exp[γ/(Abs[u-v]2+σ2)]-1,{u,0,1},{v,0,1}]; 
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Fig. 13. Kernel with MOderate Decreasing (KMOD) 

 
The value of the regularization parameter is, 
c=100; 

Training the continuous classifier function, 
F1=SupportVectorClassifier[xym,zm,K,c]; 



 

we get its analytical form, 
Short[F1[[1]],15] 
-0.108208-91.611(-1+e0.5/(9.+Abs[-0.352941+x1]

2+Abs[-0.639216+x2]2+Abs[-0.596078+x3]2))- 
   -43.766(-1+e0.5/(9.+Abs[-0.34902+x1]

2+Abs[-0.627451+x2]2+Abs[-0.596078+x3]2))+ 
   +<<30>>+ 
   +0.0(-1+e0.5/(9.+Abs[-0.25098+x1]

2+Abs[-0.262745+x2]2+Abs[-0.219608+x3]2))+ 
   +0.0(-1+e0.5/(9.+Abs[-0.235294+x1]

2+Abs[-0.247059+x2]2+Abs[-0.211765+x3]2)) 

The RGB values of the original image vector 
xx=Flatten[RawImageData[img],1]; 

and its dimensions 
nd=Dimensions[xx] 
{60501,3} 

Now, the discrete classifier is applied, 
decision=Map[Sign[F1[[1]]]/.{x1→#[[1]],x2→#[[2]],x3→#[[3]]}&,xx/255]; 

We shall use colors for yellowish and not yellowish spots, with RGB values pathes 
and others, respectively, 
patches={0.5,0.5,0};others={1,0.5,0.75}; 

The RGB value of pixels classified as yellowish (labeled with 1 by the classifier) will 
be overwritten by the RGB values of pathes, and the others pixels (labeled with −1) 
by the RGB values of others, 
Do[If[decision[[i]]==1,xx[[i]]=patches,xx[[i]]=others], 
  {i,1,nd[[1]]}]; 

We partition the RGB image vector to form a matrix, and transform this image matrix 
into an image object, 
U=ToRGBColor[Partition[xx,301]]; 

Here are the original and the filtered image, 
Show[GraphicsArray[{Graphics[img],Graphics[U]}]]; 
 

 
Fig. 14. The original and the filtered image 

 
The results shows the data generalization ability of SVC, which was trained with only 
30 pixels, and successfully represents more than 60 thousands. 
 
 
 
 



 

4.2 Multi-class classification 
 
Support Vector Classifiers were originally designed for binary classification. How to 
effectively extend it for multi-class classification is still an on-going research issue. 
Currently there are two types of approaches for multi-class SVC. One is by 
constructing and combining several binary classifiers, while the other is by directly 
considering all data in one optimization formulation. Methods of this latest category 
are called all-together methods.  

Here we employ the one − against − all method [8] belonging to the first 
category, the combination of several binary classifiers. It constructs k SVC models, 
which means k decision functions, where k is the number of classes. The ith SVC is 
trained with all of the examples in the ith class with positive labels, and all other 
examples with negative labels. Thus given m training data ),(,...),,( 11 mm yxyx , where 

miRx n
i ...,1, =∈ , and },1{ kyi ∈ . We say ix  is in the class which has the largest 

value of the decision function. In our case k = 3, m = 201 × 301 = 60501 and n = 3. 
Let us define the list of labels for the second class, 

zm=Join[Table[-1,{10}],Table[1,{10}],Table[-1,{10}]]; 

The second decision function is 
F2=SupportVectorClassifier[xym,zm,K,c]; 

in symbolic form 
Short[F2[[1]],15] 
-0.0635132-60.3727(-1+e0.5/(9.+Abs[-0.352941+x1]

2+Abs[-0.639216+x2]2+Abs[-0.596078+x3]2))- 
   -32.4338(-1+e0.5/(9.+Abs[-0.34902+x1]

2+Abs[-0.627451+x2]2+Abs[-0.596078+x3]2))+ 
   +<<27>>+ 
   +42.0541(-1+e0.5/(9.+Abs[-0.25098+x1]

2+Abs[-0.262745+x2]2+Abs[-0.219608+x3]2))+ 
   +37.0146(-1+e0.5/(9.+Abs[-0.235294+x1]

2+Abs[-0.247059+x2]2+Abs[-0.211765+x3]2)) 

The third class has the list of labels as follows 
zm=Join[Table[-1,{20}],Table[1,{10}]]; 

Then the third decision function is 
F3=SupportVectorClassifier[xym,zm,K,c]; 

in symbolic form 
Short[F3[[1]],15] 
-0.874528+157635(-1+e0.5/(9.+Abs[-0.352941+x1]

2+Abs[-0.639216+x2]2+Abs[-0.596078+x3]2))+ 
   +78.926(-1+e0.5/(9.+Abs[-0.34902+x1]

2+Abs[-0.627451+x2]2+Abs[-0.596078+x3]2))- 
   -51.2964(-1+e0.5/(9.+Abs[-0.811765+<<1>>]

2+Abs[<<1>>]2+Abs[-0.588235+x3]2))+ 
   +81.8819(-1+e0.5/(9.+<<1>>

2+<<1>>2+Abs[<<1>>]2)) 
   +<<32>> 

Now we restore the RGB values of the original image vector, which was overwritten 
during the binary classification, 
xx=Flatten[RawImageData[img],1]; 

Then applying the three different continuous classifiers to the pixel vector of the 
image 
 
 



 

decision1=Map[F1[[1]]/.{x1→#[[1]],x2→#[[2]],x3→#[[3]]}&,xx/255]; 
decision2=Map[F2[[1]]/.{x1→#[[1]],x2→#[[2]],x3→#[[3]]}&,xx/255]; 
decision3=Map[F3[[1]]/.{x1→#[[1]],x2→#[[2]],x3→#[[3]]}&,xx/255]; 

We construct a list having elements as list referring to a pixel, and containing three 
values, the values resulted by the three different classifiers applied to the pixels, 
d123=Transpose[{decision1,decision2,decision3}]; 

The pixel will be assigned to the class, for which it has the largest value of the 
decision functions, 
d=Map[Position[#,Max[#]]&,d123]//Flatten; 

Let us assign the following three colors to the different classes, 
class1={1,0,0};class2={0,1,0};class3={0,0,1}; 

We paint each pixel with the color of the proper class, 
Do[Which[d[[i]]==1,xx[[i]]=class1,d[[i]]==2,xx[[i]]=class2, 
  d[[i]]==3,xx[[i]]=class3],{i,1,nd[[1]]}]; 

then partition the RGB image vector to form an image matrix, and transform this 
image matrix into an image object, 
U=ToRGBColor[Partition[xx,301]]; 

Here are the original and the three-class classified image, 
Show[GraphicsArray[{Graphics[img],Graphics[U]}]]; 
 

 
Fig. 15. The original and the three-class classified image 

 
 

5 Conclusions 
 
Support vector classification method has been developed in software Mathematica 
and the method is ready to use for different technical applications. The step by step 
implementation of the support vector classification algorithm in Mathematica was 
presented and explained here. 

Support vector classification method provides a very promising application 
possibility in photogrammetry and petrological microscopy. One of the most 
important applications of this method in remote sensing is the filtering of airborne 
digital land images by pixel classification. 

The Mathematica notebook form of this paper is available on Web [9]. 
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