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ABSTRACT 
 
A new method based on support vector regression (SVR) has been developed for 
network levelling. Employing zero insensitive margin and first order polynomial kernel, 
the general form of SVR has been reduced to a kernel ridge regressor, which is a linear 
function approximator.  Then this function approximation problem can be transformed 
into an adjustment problem, simply using proper recasting of the variables. Only one 
part of the measured values (training equations) is considered in the adjustment, the 
other part of them (test equations) is used to compute the risk of the data 
generalization. Then the quality of the estimation can be measured by computing the 
performance index of the levelling, a value which is a trade off between adjustment 
quality (residual of the test equations) and the adjustment risk (the ratio of the residual 
of the test equations and that of the training equations). This performance index can be 
optimized with the regularization term of the ridge regressor. The algorithm was 
implemented in Mathematica 5.1 and demonstrated by numerical example. 
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INTRODUCTION 
 
Robust adjustment methods are well developed in geoscience application, (Jianjun, 
1996). These methods are based on different statistical models, and their common fea-
ture is that they are robust against the influence of gross errors, however their can be 
distinguished according to the type of robustness they being for, like distribution ro-
bustness, data robustness, model robustness and so on, (Wicki, 1999). 



The reliability of adjustment was first introduced by Baarda (Wicki, 1991, Carosio, 
1996). He considered three factors, which may have influence on the reliability of the 
adjustment process: the structure of the geodetic network, the error modelling and the 
statistical test of measured data and computed values. 
These approaches use all of the measured data for adjustment analysis, following the 
famous saying, that "one measurement is not a measurement". However this saying 
may suggest a different approach, especially on the light of the artificial learning the-
ory. Artificial learning methodology uses training data in order to select a hypothesis 
from the hypothesis space. The quality of learning, the consistency of the selected hy-
pothesis, can not be tested on the training set, while hypothesis that is consistent on this 
set, may not correct on unseen data. Therefore, the so called data generalization ability 
is a key factor, (Mitchell, 1997). 
In this paper, we apply this principle to geodetic network adjustment, using only one 
part of the measurements for the adjustment, while the other part of them will serve for 
testing. Kernel ridge regression is employed in order to make a trade-off between the 
quality and the risk of the adjustment and in this way the overall performance index of 
the adjustment can be optimized. 

1. ADJUSTMENT PROBLEM AND ITS TRADITIONAL SOLUTION 

First, we shall demonstrate the method with a very simple levelling problem, see Fig. 1. 
 

 
Fig. 1. A simple levelling problem 

 
The unknown values of heights to be estimated via adjustment are, a, b, c and d; values 
of α, β, γ and δ are the known heights; and Li are the measured height differences 
between points. Arrows show the direction of ascents. The adjusting equations can be 
written according to Fig.1 

eqs={L1==α-a,L2==a-β,L3==b-a,L4==γ-b,L5==b-c,L6==c-d,L7==δ-d}; 

Now, we transform these equations into matrix form. The matrix of the system is 
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where the system matrix has m rows and n columns 
{m,n}=Dimensions[A] 
{7,4} 



and m > n. 
The measured values are 

data={L1→0.351,L2→1.942,L3→0.863,L4→0.631,L5→1.798,L6→0.673, 
L7→1.107,L8→1.124,α→720.301,β→718.006,γ→721.494,δ→719.567, 
∈→719.566}; 

Then the right handside vector is 
b={719.95,-719.948,-0.863,720.863,-1.798,-0.673,718.46} 

with dimension m. 
The rank of  A is 

MatrixRank[A] 
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and the rank of the augmented matrix is 
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MatrixRank[Ab] 
5 

consequently the system is overdetermined, inconsistent having no solution. However, 
solution can be seeked in the least square sense, employing pseudoinverse of A 

PI=PseudoInverse[A]; 
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then the solution is 
x=PI.b 
{719.964,720.857,719.084,718.435} 

2. QUALITY AND RISK OF THE ADJUSTMENT 
 
The quality of the least square adjustment can be characterized by the average residual, 
namely the total residual divided by the number of rows of A, 

q=(1/m)Norm[A.x-b] 
0.00809776. 

Individual residual differing considerably from this average may indicate outlier meas-
urement then the correspondig row should be eliminated from the system. However in 
geoinformatics it frequently happens that data collections are irregular and far from 
substantial for adjustment. This fact could lead to overadjustment, a poor data gener-



alization, which means that we get small average and individual residiums for the rows 
of  matrix A, but large average residiums for adjustment equations are not considered 
as rows in  A. 
To characterize data generalization of the adjusment method, the adjusment equations 
can be divided into two groups, equations for traning (adjusting) and equations for test-
ing.   
Let us consider the first five equations (rows) in our original system, namely we carry 
out the adjustment of  A+x+=b+ 
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and 
b+={-0.863,720.863,-1.798,-0.673,718.46}. 

The rank of the matrix of the training equations should be also m 
MatrixRank[A+] 
4 
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The correspondig solution is 
x+=PseudoInverse[A+].b+ 
{720.017,720.88,719.099,718.443} 

the average residual, q+ is 
m+=Length[b+] 
5 
q+=(1/m+)Norm[A+.x+-b+] 
0.0068 

Let us test our solution with the remained two equations (test equations), which were 
left out from the adjusment process, 
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the corresponding right side 
b–={719.95,-719.948} 

The average residium of the test equations, q– is 
m–=Length[b–] 
2 
q–=(1/m–)Norm[A–.x+-b–] 



0.0480885 
We can characterize the risk of the generalization of our solution with the following 
heuristic function of the ratio of the two average residiums,  ξ =q

–
 /q+ 

r[ξ_]=Max[ξ-1, 0]; 
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Fig. 2. Risk of  adjustment 

 
This means that our solution has a risk from the point of view of data generalization, 
when the residium of the test equations is higher than the residium of the adjustment 
itself. Higher this ratio, higher the risk is. With other words, in case of high risk, there 
is a chance, that if there would be more equations from further measurements at our 
disposal, the result of the adjustment would change considerably. 
In our case this risk is now 

r[q–/q+]//N 
6.07183 

which can be considered a high risk. 
Using traditional adjustment technique (pseudoinverse), there is no free parameter to 
influence these residiums consequently we have no means to reduce the risk of data 
generalization. 
In this paper, we suggested a technique based on kernel ridge regression, which tackles 
this problem. The first step is to transform the adjustment problem into a function 
approximation problem. 

3. ADJUSTMENT AS KERNEL RIDGE REGRESSION 

Adjustment problems can be written in the following form 
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(x is the vector of unknowns, A is the coefficient matrix of the observation equations and 
b is the vector of absolute terms) which can be transformed into a kernel ridge 
regression problem employing the primal problem of support vector regression with 



zero insensitive margin, e = 0, also ignoring bias term, (Cristianini et al, 2003). This 
yields 
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where λ is the regularization parameter. Using the following recasting of the variables, 
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for which, we derive the Lagrangian, 
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with respect w, where ρ is the Lagrangian multiplicator. Differentiating, and imposing 
stationarity, we obtain that 
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Resubstituting these relations gives the following dual problem, 
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that for convenience we rewrite in vector form, 
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differentiating with respect r and imposing stationarity, 
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which is giving the solution 
( ) yIM 12 −+= λλρ  

where M denotes the Gram matrix jiijM αα ,= . 
Now, we can express the optimal linear function as 
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where κ is the formal independent variable in the original KRR problem and 

κα ,iik = . 

Using the terms of the adjustment, see casting, we get 
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where I stands for the unit matrix; and the Gram matrix, M is, 
njiAAM jiij ...,1,,, ==  

and 



κ,ii Ak =  
where iA  is the i-th row in matrix A. 

4. SOLUTION VIA KERNEL RIDGE REGRESSION 

For linear adjustment problem we employ polynomial kernel of first order, (Schölkopf 
et al, 1999), 

K[u_,v_]:=u.v 

The Gram matrix for the training equations is 
M=Table[K[A+[[i]], A+[[j]]], {i, 1, m+}, {j, 1, m+}]; 
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and 
k={κ1-κ2, κ2, -κ2+κ3, -κ3+κ4, κ4} 

Then the regression function, with regularization parameter l =10-5 

λ=0.00001; 
f=b+.(Inverse[M+λ IdentityMatrix[m+]].k) 
719.994 κ1+720.864 κ2+719.081 κ3+718.43 κ4 

The solution of the adjustment problem is, 
x+={719.994,720.864,719.081,718.43} 

Computing the average residual of the adjustment, we get 
qR+=(1/m+)Norm[A+.x+-b+] 
0.00815105 

This is somewhat higher value than the value resulted from pseudoinverse solution, q+ 
q+ 
0.0068 

Let us test our solution with the remained two equations. The average residium of the 
test equations is 

qR–=(1/m–)Norm[A–.x– -b–] 
0.0315464 

the risk of the adjustment is 
r[qR–/qR+]//N 
2.87023 

which is lower value than that of the pseudoinverse solution, 
r[q–/q+] 
6.07183 

The quality of the adjustment,   q++q–  in case of pseudoinverse solution, 
(q++q–) 



0.0548885 
and employing kernel ridge regression, we get also better result namely 

(qR+/qR–) 
0.0396975. 

This means, somewhat less "tight fitting" adjustment of the training set, provides 
smaller residium of the test set. Using this type of technique for adjustment, one can 
make a trade-off between adjustment quality and adjustment risk. This balance can be 
controlled by the regularization parameter of the kernel ridge regression. Increasing 
this l parameter, the risk can be reduced, but the adjustment quality will be worse. 

5. FINDING OPTIMAL REGULARIZATION PARAMETER 

Let us consider the following objective function 
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The influence of the risk can be controlled by this weighting parameter µ. We may 
consider this function as a performance index of the adjustment, namely smaller is the 
value of Q(l, m), more efficient the adjustment is. This performace index for l =  
0.00001 and µ=1, is 

Q=(qR++qR–) + r[qR–/qR+] 
2.90992. 

While the value of this performance index for the traditional pseudoinverse solution is, 
(q++q–)+r[q–/q+] 
6.12672. 

The optimal regularization parameter, l can be determined as the solution of the 
following optimization problem, 

( )µλ
λ

,Qminimize  . 

We just mention here, that it would be also possible to generalize this objective function 
using different weighting factors for quality and risk. 
 
6. IMPLEMENTATION IN MATHEMATICA 
 
Let us summarize the steps of the computation as a Mathematica function. 

KernelRidgeRegression[λ_, A1_, b1_, A2_, b2_,µ_]:=Module[{K, u, v, 
   M, i, j, m1, m2, n, k, f, x1, qR1 ,qR2 ,q, rR, r, QR, ξ}, 
   {m1, n}=Dimensions[A1]; {m2, n}=Dimensions[A2]; 
   K[u_, v_]:=u.v; r[ξ_]:=Max[ξ-1., 0.]; 
      M=Table[K[A1[[i]], A1[[j]]], {i, 1, m1}, {j, 1, m1}]; 
      k=Table[A1[[i]].Table[κj, {j, 1, n}], {i, 1, m1}]; 
   f=Simplify[b1.(Inverse[M+λ IdentityMatrix[m1]].k)]; 
      x1=Flatten[Table[Coefficient[f, κj, {i, 1, n}]]; 
   qR1=(1/m1) Norm[A1.x1-b1]; qR2=(1/m2) Norm[A2.x1-b2]; 
   q=qR1+qR2;  rR=r[qR2/qR1]; QR=q+µrR; 
   {QR,rR,q,qR1,qR2,x1}]; 



Let us check it, 
KernelRidgeRegression[0.00001, A+, b+, A–, b–,1] 
{2.90992,2.87023,0.0396975,0.00815105,0.0315464, 
   {719.994,720.864,719.081,718.43}} 

which is the same, what we computed "zu Fuß", 
{Q, r[qR–/qR+], (qR++qR–), qR+, qR–, x+} 
{2.90992,2.87023,0.0396975,0.00815105,0.0315464, 
   {719.994,720.864,719.081,718.43}} 

Let us plot the performance index as function of the regularization parameter, l 
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Fig. 3. The performance index, Q(λ, 1) function 

 
The optimal regularization is 

λopt=0.0000289582 
and for  the optimal solution, we get 
sol=KernelRidgeRegression[λopt, A+, b+, A–, b–,1] 

{0.0154122,0.,0.0154122,0.0146837,0.000728537, 
   {719.949,720.833,719.047,718.407}} 

the performance index, 
sol[[1]] 
0.0154122. 

The  Kernel Ridge Regression (KRR)  method gives the following adjustment result 
x+=sol[[6]] 
{719.949,720.833,719.047,718.407} 

the residual of the all equations 
(1/m)Norm[A.x+-b] 
0.0104904  

while employing the traditional pseudosinverse for all equations 
x 
{719.964,720.857,719.084,718.435} 

residual for traditional solution: 
(1/m)Norm[A.x-b] 



0.00809776 . 
The average residual of the traditional solution is smaller than that of the KRR method, 
but this solution gives no information about adjustment risk, while the second one is 
able to indicate this risk and even provide an optimal trade off between risk and 
adjustment quality. 
In case of using all equations for training, we have no information about adjustment risk, 
and only the quality of the adjustment can be computed, because no test equations are 
available. Employing KRR we loose somewhat in quality but gain information about the 
risk of data generalization, and find the optimal trade off between quality and risk. 
KRR method uses a part of information being at our disposal to estimate and increase 
the reliability of the adjusted values and at same time tries to preserve adjustment 
quality. 

7. GEODETIC APPLICATION 

Now let us employ the KRR method for levelling the following synthetic network. 

 
Fig. 4. The terrain model for the test computations 

 
In Fig. 5 triangles indicate points where values of height are known. Arrows show the 
direction of ascents. The thicker lines indicate the testing relations (equations). The 
total number of equations is 115. We used 90 equations for training and 25 equations 
for testing. For example the 16th equation looks like 

Eqs1[[16]] 
-h5+h106==-0.88 

similarly the 3rd test equation is,   



Eqs2[[3]] 
hhh111000333---hhh111000444======---000...111444111   ...   

 
 

Fig. 5. The levelling network for the test computations 
 
The value of height is known in twelve points. They are 
{h1, h2, h3, h4, h5, h6, h7, h8, h9, h10, h11, h12}. 

The values, 
{96.844, 97.439, 99.002, 99.332, 96.996, 98.252, 97.637, 6.743, 
    96.005, 96.744, 93.981, 100.684}; 

The unknown 44 variables of levelling, where the heights should be computed are 
H={h101, h102, h103, h104, h105, h106, h107, 
  <<31>>, h139, h140, h141, h142, h143, h144}. 

Let us convert these equations into matrix form. For the traning equations, we get 
Axb1=LinearEquationsToMatrices[Eqs1,H]; 
A1=Axb1[[1]] 
b1=Axb1[[2]]; 
{m1,n}=Dimensions[A1] 
{90,44}. 

For the test equations, we get 
Axb2=LinearEquationsToMatrices[Eqs2,H]; 
A2=Axb2[[1]]; 
b2=Axb2[[2]]; 
{m2,n}=Dimensions[A2] 
{25,44}. 

Employing KRR method, the performance index as function of l,  in case low level risk 
influence, µ = 0.00005 
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Fig. 5. Performance index as function of the regularization parameter, l 

 
and the optimal value, 

λopt=0.00006537. 
Then the KRR method gives the following values, 

sol=KernelRidgeRegression[λopt, A1, b1, A2, b2, µ]; 

the optimal performance index, 
0.016236, 

the levelled values are 
x1={94.812, 95.440, 95.787, 96.096, 96.093, 96.107, 94.967, 
 96.243, 97.560, 97.831, 97.641, 97.353, 97.027, 95.678, 97.441, 
 99.304, 99.613, 99.130, 98.143, 97.668, 95.697, 97.865, 100.245, 
 100.693, 99.728, 98.822, 97.667, 95.437, 97.397, 98.881, 99.323, 
 99.300, 98.702, 97.722, 94.775, 96.145, 97.948, 97.699, 94.405, 
 95.671, 96.297, 96.606, 96.802, 97.302} 

 
Fig. 6. Errors of the computed heights 



 
Computed and original heights were compared and standard error was computed by 
the formula 
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where ix  are the original and ix1  are the computed heights. The standard error is ±9 
mm. Error distribution of computed heigts for the terrain model can be seen in Fig. 6. 

8. CONCLUSIONS 

Artificial learning methodology uses training data in order to select a hypothesis from 
the hypothesis space. The quality of learning, the consistency of the selected hypothesis, 
can not be tested on the training set, while hypothesis that is consistent on this set, may 
not correct on unseen data. Therefore, the so called data generalization ability is a key 
factor. We have applied this principle to levelling network adjustment, using only one 
part of the measurements for the adjustment, while the other part of them will serve for 
testing. Kernel ridge regression is employed in order to make a trade-off between the 
quality and the risk of the adjustment and in this way the overall performance index of 
the adjustment can be optimized. In geoinformatics it frequently happens that data col-
lections are irregular and far from substantial for adjustment. This fact could lead to 
overadjustment, a poor data generalization, which means that we get small average and 
individual residiums for the rows of  matrix A, but large average residiums for adjust-
ment equations are not considered as rows in A. Somewhat less "tight fitting" 
adjustment of the training set, provides smaller residium of the test set. Using this type 
of technique for adjustment, one can make a trade-off between adjustment quality and 
adjustment risk. This balance can be controlled by the regularization parameter of the 
kernel ridge regression. Increasing this regularization parameter, the risk can be 
reduced, but the adjustment quality will be worse. 
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