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Abstract The first version of the Unified European 
Gravity Net (UEGN) was set up in 1993, based on 
the participation of 11 countries. The aim was basi-
cally the generation of the unified European geo-
detic basement for global geologic and geodynamic 
purposes. The unified scale of the network is en-
sured by numerous absolute gravimetric stations. 
Since 1995 further countries (inter alia Hungary) 
have been joined to the unified network. In this pa-
per different adjustment methods for the Hungarian 
net part is presented by the authors. Robust proce-
dures are described besides the least squares 
method, as both a free and a constrained network. 
Our methods and software are ready to process all 
the European gravity data. 
Keywords: Hungarian Gravity Network, Europen 
Gravity Network, adjustment of gravity network, 
robust adjustment. 

 
 

1 Introduction 
 
The International Union of Geodesy and Geophys-
ics (IUGG) has long been planning to set up a uni-
fied scale and datum gravimetric network which 
could be applicable in the whole continent of 
Europe. Its conditions have been established by 
now, because several countries have got portable 
absolute gravimeters (AXIS, JILAG, etc.), provid-
ing unified scale in accordance with the current 
accuracy specifications. At the same time the need 
for increasing the accuracy of global geodetic refer-
ence systems, the solving of several geodynamic 
and geotectonic problems, have brought about the 
realisation of this objective as a daily routine. 
As regards the number of absolute stations and 
point density (the number of 1st and 2nd order bases 
as well as their regional distribution), and also their 
accuracy, the Gravimetric base networks of the in-
dividual European countries are rather heterogene-
ous. It seems both necessary and expedient to estab-
lish a unified network whose principles were rec-
ommended at the joint conference of the Geodesy 

and Geophysics Working Group (GGWG) of 
NATO and the Mapping Services of East European 
Armies held in Budapest in collaboration with civil 
experts in 1994. The essence of it defines the crea-
tion of a network consisting of absolute points at a 
general distance of 100–150 km within which the 
1st and 2nd order bases are expedient to be meas-
ured with modern relative gravimeters. 
The US National Imagery and Mapping Agency 
(NIMA, formerly DMA) began to increase the ac-
curacy of WGS-84 reference ellipsoid in 1991 and 
substantially helped Hungary establish both a Hun-
garian national Military GPS Network (KGPSH) 
and an absolute gravimetric base network Ádám et 
al., (1994). 
 

2 The Hungarian Base Network (MGH-
2000) – the UEGN part of the network 
 
When establishing Hungary's new gravimetric base 
network, we considered the following aspects as 
important: 

- Over the course of the planning of zero order 
base net (absolute stations) we attributed great 
importance to placing them evenly all over the 
country as well as setting them quite close to GPS 
geodynamic points, which had been established 
some time before, so that an economical system of 
integrated networks could be set up. We call these 
points integrated network points which means that 
the same point is a member of GPS, gravity, level-
ling, etc. base network. 

- When new points are established, or the de-
stroyed ones are replaced, one has to bear in mind 
the changes of ownership which is closely related to 
the protection of points. 
MGH–2000 is part of the joint networks of the three 
countries Czech Republic, Hungary and Slovakia 
(UGN), so the methods of modern network plan-
ning could partly applied Csapó, Sárhidai (1985), 
because the joint form is basically determined by 
the previous and applicable parts of UGN. In any 
case, we have experienced that the planning of net-



 

works for optimal network measurements can give 
rise to the necessity of establishing connections 
between far away points. However, this might not 

be carried out (transporting instruments by planes) 
on account of Hungary's present financial situation. 

 

 
Fig. 1. The Hungarian Base Network MGH-2000 and its UEGN part  

 
 
2.1 The zero order network 
 
The use of such network is meant to ensure the 
scale of the national (entire) base network as well as 
checking the stability of gravity by repeated obser-
vations. The zero order network consists of 15 abso-
lute stations (6400km2/point) their location is given 
in Fig. 1, including foreign absolute stations near 
the borders as well. These points were placed at the 
ground level of significant buildings whose survival 
and accessibility seem to be ensured for a long time 
(manorhouses, mansions, etc.). Monumentation was 
implemented by floor level 120 by 120 by 100 cm 
concrete blocks. A brass bolt was fixed to the mid-
dle of the upper level of the block indicating the 
height above sea-level according to the Baltic sys-
tem. The points were tied to two or three points of 
the national levelling network, allowing ± 5 mm 
accuracy. 
The geographical coordinates of the stations was 
determined on the basis of 1:10000 topographic 
maps with ± 1 second confidence limit. Gravity 
values relating to the reference heights of absolute 

gravimeters was determined with LCR gravimeters 
allowing 1,5–3 µGal confidence limit. The station 
established in Budapest is of extraordinary impor-
tance, because measurements have repeatedly been 
carried out on it with absolute gravimeters of differ-
ent type in every two or three years since 1980. At 
most stations repetitive measurements were carried 
out in the past three or four years as well. Each sta-
tion has got at least one "excenter point" which is 
monumented with a concrete block of 80 by 80 by 
100 cm outside the building. The relative confi-
dence limit of its g value is not worse than 5 µGal.  
 
2.2 First order network 
 
The 19 points included in Fig. 1 are by and large 
the same as the bases of MGH–80 placed at airports 
Csapó, Sárhidai (1990). The distance varies be-
tween 50 to 70 km and the density of points is 4400 
km2/point. The determinations of geographical co-
ordinates of the points was similar to the methods 
described in section 2.1. Altitude determination was 
done with 1–10 mm confidence limit.  



 

2.3 Second order network 
 
As mentioned already, these points were established 
by ELGI in the 1970s. The distance between the 
individual points is 10 to 15 km in hilly areas, 
whereas it ranges between 15 to 25 km in the plains. 
The average density of points is 250km2/point. We 

have replaced a couple of dozens of points which 
were destructed during the last twenty years and 
have integrated them into MGH-80. The new net-
work contains 386 second order points.  
On Fig. 1. the points of MGH-2000 are presented 
together with the points which are members of 
UEGN-2000. 

 

 
Fig. 2. The map of the national gravimetric calibration line 

 
3 National gravimetric calibration line  
 
Its present form had been developed since 1969, its 
present status was accepted in 1985. Formerly it 
served as the scale of the Potsdam Gravity System 
(the first absolute station  was established in Buda-
pest in 1980). There are five absolute stations 
within the 210 mGal range of the line (the highest 
∆g value is 250 mGal between the base points of 
the country). The other points of the calibration line 
are 1st and 2nd order points with an average dis-
tance of 30 km from each other (Fig. 2). ∆g values 
between the points were previously determined with 
Askania Gs–12, GAG–2, Sharpe, Worden, then 
LCR gravimeter groups. The vertical gradients of 
the points were determined with a group of 3-4 
LCR instruments with an accuracy of 4–7 µGal 
Ccapó (1987). The relative accuracy of each point is 
8–12 µGal. The calibration line is part of UGN, and 
the section of Siklós-Budapest is the southern part 
of the Carpathian Polygon. The Carpathian Poly-
gon was established by ELGI in collaboration with 

Czech, Polish, and Slovakian partners in 1973 to 
monitor the non–tidal variations of the gravity field 
in the Carpathians (the line starts from Siklós abso-
lute point then goes via Budapest, Zilina, Zakopane 
to Krakow). It was reobserved in 1978–79, 1988–89 
and 1999-2000. 
 
4 Adjustment of measurements by the Least 
Squares method 
 
The observed data can be adjusted by the least 
square method as a constrained network. The fixed 
points of the network may be the latest g values of 
the absolute gravity stations, Csapó and Sárhidai 
(1990). The mean value of observed gravity differ-
ence (∆g) observed in A–B–A–B–A system by one 
gravimeter (which means the average of the four 
observed difference) can be taken as one individual 
measurement. 
Taking into account the large number of unknowns 
and the problems of numerical stability of adjust-
ment computations, the matrix orthogonalization 



 

method can be used for practical adjustments, Völ-
gyesi (1979, 1980, 2001). The base principle of 
matrix orthogonalization method can be demon-
strated by the hyper-matrix transformation: 
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A is the coefficient matrix of the observation equa-
tions, l is the vector of absolute terms, P is the 
weight matrix, E is a unit matrix, 0 is a zero vector; 
W is a matrix having orthogonal columns, and G-1 
is an upper triangular matrix, n is number of equa-
tion, r is number of unknowns, Völgyesi (1980). 
This matrix transformation directly yields the un-
knowns xi in place of vector x , variances and co-
variances of unknowns xi are comprised in weight 
coefficient matrix 

*)( 11
(x) GGQ −−=  

where  *)( 1G−  is transposed of  1G− . 
After executing transformation the corrections vi 
can be computed from the v~  vector of transformed 
hyper-matrix, using the equation 
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In case of practical computation each columns of 
the hyper-matrix should be stored one by one on 
hard disk. Since the actual transformation is being 
performed in the RAM of a computer, the maxi-
mum number of equations and unknowns is limited 
by the RAM size (free place for at least two col-
umns must be provided in the RAM at the same 
time). Matrix-orthogonalization method gives a 
good possibility to solve large equation systems in 
general RAM size beside high numerical stability, 
Völgyesi (2001). 

 

5 Robust adjustment methods 
 
5.1 Adjustment of measurements by minimizing 
the L1 norm of the correction vector 
 
Since our observations are contaminated by noise, 
usually more measurements are carried out than the 

number of parameters to be defined. In these cases 
one has to handle over-determined or mixed-
determined problems. The correction vector is not a 
null vector, therefore the system of equations to be 
solved are inconsistent. In this case several solu-
tions exist, which are generally based on the mini-
mization of some norms of the correction vector.  
Various types of optimization processes were de-
veloped in order to give the most reliable estimation 
for the parameters. Gauss introduced the least 
squares (LSQ) method based on the L2 norm of re-
siduals. Laplace applied the minimization of the 
sum of absolute deviations ( 1L  norm). The choice 
among the different norms depends on what kind of 
weight should be given to the data which are rela-
tively far from the trend (outliers).  
The LSQ procedure based on the minimization of 
L2 norm leads to optimal parameter estimation in 
case the measurement noise follows Gaussian statis-
tics (normal distribution). In most cases this condi-
tion is not fulfilled. In practical applications very 
often wider tail-distributions have to be supposed 
(e.g. because of the outliers). The most frequently 
supposed example is the simple exponential 
(Laplace) distribution Menke (1984), where the 
minimization of the objective function using the L1 
norm of the correction vector v (the sum of absolute 
deviation of measured and observed data) 

min
1
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=

n

i
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leads to optimal estimation.  
Besides its inevitable advantages and simplicity, the 
greatest disadvantage of the LSQ method is being 
extremely sensitive to the outliers, as it redistributes 
the locally occurring outlier errors to all the devia-
tions, causing reliability problems in case of con-
taminated, noisy set of observations.  
In such cases robust procedures are applied, which 
are less sensitive to the divergence from the normal 
distribution, therefore they reduce the biasing effect 
of the relatively large errors. One of the most fre-
quently applied procedures is one based on the 
minimization of the L1 norm of the correction vec-
tor.  
The principle of the adjustment based on the L1 
norm is briefly the following. One can describe the 
intermediary equations between the yi observations 
(measured data) and the xj parameters to be defined 
by the adjustment and furthermore the aij coeffi-
cients by the expression Závoti (1999) 

∑ += ijiji xay ν  . (2) 

The unknown vector of parameters x  has to be 
estimated in the way that the objective function 
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is to be minimized. 
One can get the solution of the extremum problem 
by deriving the (3) objective function accordant to 
the values of  x  , where the  
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system of equations can be set up. Performing the 
operations one can get the equations 
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By introducing the elements of diagonal weight 
matrix  iiiw ν/1=   eq.(5) can be taken to the form 
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or else the normal set of equations of the problem is 

W yAxW A A TT =  (7) 

in matrix form (e.g. Scales et al. 1988), where  

{ }{ }  /1 idiag ν=W ,   (i=1...n). 

The resulting set of equations − as usually the nor-
mal system of equations of robust procedures − is 
non-linear. Most frequently the numerical problems 
occurring at solving the non-linear set of equations 
are evaded by the help of more complicate iterative 
procedures. This kind of procedure is e.g. the IRLS 
(Iteratively Reweighted Least Squares) algorithm, 
where the solution of the non-linear equations is 
lead back iteratively to that of linear set of equa-
tions. In that case the appropriately weighted form 
of the linear system of equations is solved in each 
iteration step. After the determination of the weight 
matrix one can apply a simple, iteratively re-
weighted linear LSQ algorithm. 
The substance of the algorithm is that in the first 
iteration step the solution corresponding to the L2 
norm is derived, then in each following step the  
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diagonal weight matrix is calculated from the data 
of the previous iteration step. Thus one can get the  

( ) ( ) yWAAxWA TT  =  00  

linear set of equations. The characterizing step of 
jth iteration is 

yWAxA WA TT )1()1( 
= −− jj . (8) 

Consequently, in each iteration step the weighted 
form of (8) linear set of equations has to be solved 
by applying the weight matrix  ( )1−= jWW . The 
procedure is being performed until an appropriately 
chosen stop criterion is fulfilled. 
Kis (1998) introduced a generalized objective func-
tion in which 2λ -fold of the  qL  norm of the rela-

tive parameter vector was added to the  pL  norm of 
the relative data deviation vector 
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This objective function (with p and q parameters) is 
suitable for solving over- and mixed-determined 
problems. A generalized adjustment procedure ap-
plying the IRLS method is defined throughout the 
minimization of this objective function with the 
typical jth step  
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in which the proper choice of p and q parameters 
leads to some of the most frequently used adjust-
ment procedures (LSQ [ 2== pq , 0=λ ], 
Marquardt-Levenberg [ 2== pq , 0≠λ ], LAD-
IRLS [ 1=p , 0=q ]), and some new IRLS proce-
dures can also be defined. In eq.(10)  

 { }{ }2−= q
kxdiag*R ,     (k=1...m), 

and 
{ }{ }2−= p

idiag ν*W ,    (i=1...n)  

are the weight matrices. In the special case of 
2== pq , the *R  and *W  are unit matrices, 

eq.(10) is a linear set of equation, therefore the 
IRLS method is not required for the solution. 



 

By the modification of the simplex method Barra-
dole and Roberts (1973) elaborated an effective 
method to solve the linear programming problem 

 νyAx += ,    min→∑ iν , 

 ,−+ −= jjj xxx  −+ −= iii ννν , 

 yvvAxAx =+−− −+−+ , 

 min→+ −+∑ ii νν . 

Závoti (1999) expounds a two-phase simplex algo-
rithm. In the first phase a base solution of the linear 
programming problem is searched. In the second 
phase the solution of the over-determined set of 
equations is given using the simplex table resulted 
from the first phase as initial data. 
Procedures minimizing the 1L  norm are less sensi-
tive to noisy data sets, consequently in case of the 
adjustment of data sets containing outliers much 
favourable results can be achieved then minimizing 
the 2L  norm. 
 
5.2 The Danish method 
 
The method was developed by Krarup et al. (1980) 
in order to decrease the effect of relatively large 
errors in the adjustment. At the first step of the pro-
cedure the adjustment is carried out by using the 
LSQ method, and all observed data has equal 
weight ( 1=p ). Afterwards the weight matrix is 
determined iteratively: 
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where j is the actual iteration step. The ak coeffi-
cient is correct if p=0.25 for the erroneous meas-
urement. The threshold of errors can be taken as the 
function of the errors of unit weight, then: 

2/3 kka ν=  
where  

03µν =k         if  0max 3µν >  

02µν =k        if 0max0 32 µνµ <<  

0µν =k          if 0max0 2µνµ <<  

Csapó and Völgyesi (2001). The erroneous meas-
urements will get less weight by each subsequent 
iteration step. The iteration should be reiterated 
until the error of unit weight is decreasing in a con-
siderable way. 
In the adjustment of MGH–2000 two steps of itera-
tion proved to be sufficient. The data set consisted 
of all the measurements of MGH–2000, absolute 
points near to the border in the neighbouring coun-

tries and connecting ties across the borders, alto-
gether 5544 individual observed gravity differences 
and their corrections, 450 unknowns (point values 
and scale factors of gravimeters) 20 absolute points, 
436 gravimeter points including 8 Austrian and 42 
Slovakian ones. 
Now our methods and software are ready to process 
UEGN data. 
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