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ABSTRACT 
 
Torsion balance measurements in Hungary were checked by least-squares collocation. 
The methodology was the so-called “leave-one-out” prediction of horizontal gravity 
gradients. The method was successfully tested on a selected subset of 700 torsion bal-
ance measurements and only three possible outliers has been detected. These results are 
promising in view of a planned new Hungarian geoid determination. 
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INTRODUCTION 
 
Altogether about 60000 torsion balance stations were measured by the institutions 
MAORT, ELGI and OKGT in Hungary in the XXth century (Szabó, 1999). Unfortu-
nately due to different reasons a certain part of the measurements are missing today, 
however, the remaining part can still be saved for applications. In the last 10 years 
measurements at 24450 were processed and saved into a computer database at ELGI 
(Eötvös Loránd Geophysical Institute). Although measurements in the past were mainly 
collected for prospecting of oil and gas, at a significant part of the measurement points 
besides horizontal gravity gradients zxW , zyW also curvature values ∆W and xyW  have 
been determined, and what is more, largely topographic effects were also computed. 
The distribution of torsion balance measurements stored in the computer database is 
shown in Fig. 1. 

What is the accuracy of these data? A possible answer to this question can be deduced 
from repeated measurements. Since this is not possible to us, however, we would like to 
use these data in gravity field modeling and for a new Hungarian geoid solution, an-
other approach can be followed. The idea is that we attempt to “reproduce” any meas-
urement from its neighbors. Any prediction process in principle could be used for the 
purpose, on the other hand it is customary for data validation, at least in gravity field 
modeling, to use least squares collocation proposed by Moritz (1980). In this paper this 
method is reviewed for validation of Hungarian torsion balance measurements. The 
principles of the method is demonstrated test computations with this method are pre-
sented. 



 

 

 

Fig. 1. Status of the computer database of stored torsion balance measurement points. 
The coordinates are in km unit in the Hungarian national EOV grid. 

 

DATA VALIDATION BY LEAST SQUARES PREDICTION 
 

To validate torsion balance data the method of LOO (Leave One Out) prediction was 
applied. The idea of the method is to make prediction at each torsion balance station 
from the neighborhood of this point (of course without using the measurements of the 
point itself). After this the difference between prediction and actual measurements of 
the point is compared to the error of the prediction. This process is repeated for each 
measurement point and we will then see whether there are any statistically significant 
outliers in view of the prediction error. 
The equations of least squares prediction are reviewed for example by Moritz (1980). 
The main relation is well-known: 

 l1)( −+= nnsssl CCCs , (1) 

where ℓ is the vector of measurements, s is the result of prediction (signal) for a 
known/unknown station, ssC  is the signal, nnC  is the noise covariance matrix and slC  is 
the cross-covariance matrix of measurements and predictions. 

The covariance matrices in Eq. (1) can be deduced from theoretical  auto- and 
crosscovariances using the distances between points for isotropic quantities, but we will 
need also the azimuths between any pair of points for anisotropic quantities like for ex-
ample the torsion balance measurements. Hence in our case the necessary auto- and 
crosscovariances ),(, atC WxzWxz , ),(, atC WyzWyz  and ),(, atC WyzWxz  can be written as func-
tions of distance t and azimuth α. 



 

 

The theoretical covariance model proposed by Reilly (1979) was used. For us now the 
following auto- and crosscovariances are required, since we will use only the horizontal 
gravity gradients in the subsequent computations. 
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The computation of functions ),( qpΦ  can be found in Reilly (1979), and it involves the 
numerical evaluation of the Kummer hypergeometric functions as well as the definition 
of covariance function parameters C0 and d. 

The above parameters of the covariance model can be determined from isotropic em-
pirical covariance function of gravity gradients (Tóth et al. 2005). This empirical co-
variance function with its standard deviations and the approximate covariance model 
can be seen in Fig. 2. We note, however, that this empirical function was determined 
from all available gradient data and since there are more than 1 billion possible combi-
nations of the 40000 measurement points – to speed up the computation – it was neces-
sary to pre-sort the data according to the coordinates. It is obvious that the covariance 
model fits the empirical data well only for distances between 0.8-4 km, but this is satis-
factory for the present data validation purpose. On the other hand the robustness of 
collocation is well-known, i.e. the result is not too much dependent on the details of the 
chosen covariance function. 

Isotropic covariance function of gravity gradients
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Fig. 2. Isotropic covariance function of gravity gradients 

The first tests were performed at 100 selected stations near Tiszakécske. In Fig. 3 some 
of the results are shown: the original and predicted gradient vectors as well as their dif-
ferences, and three-sigma confidence ellipses. To the standard deviation of gravity gra-



 

 

dient measurements the value ± 3 E (Eötvös; 1E = 10-9 s-2) was assigned and the maxi-
mum point selection neighborhood (from where points were selected for prediction) was 
set to 1.5 km. It can be seen in Fig. 4 that at almost 18 percent of points the deviations 
exceeded the three-sigma threshold. 
 

738 740 742 744 746 748 750 752

148

150

152

154

156

158

EOV Y [km]

E
O

V
 X

 [k
m

]

20 E 

 
Fig. 3. Original and predicted gravity gradients. Predictions are shown with thick ar-

rows.  
 

736 738 740 742 744 746 748 750 752

146

148

150

152

154

156

158

160

EOV Y [km]

E
O

V
 X

 [k
m

]

20 E

 
Fig. 4. Prediction error vectors and confidence ellipses for 100 stations near 

Tiszakécske.  



 

 

The results above indicated that further tests are necessary. Therefore we repeated our 
test for 700 measurement sites to discover the effect of changing the standard deviation 
of horizontal gravity gradients on data validation. As it can be seen in Fig. 5, by increas-
ing standard deviation of the measurements to ± 5 E only four points were found such 
the deviations exceeded the prescribed threshold of three times the prediction error; 
and even at these three sites only the zxW component. Moreover, the resulting mean er-
ror ± 4,5 E is in good agreement with the apriori value ± 5 E. It can be concluded that in 
any case one should check the measurements at these four sites with possible outliers. 
 

0 5 10 15 20
0

50

100

150

200

250

difference [E]

nu
m

be
r

725 730 735 740 745 750 755 760

120

130

140

150

160

170

EOV Y [km]

E
O

V
 X

 [k
m

]

20 E 

 

Fig. 5. On the left subfigure histogram of the deviations between measurements and 
predictions is shown (the mean deviation is 4.5 E). On the right subfigure one can find 

the vectors of prediction errors and three-sigma confidence ellipses for selected 700 tor-
sion balance measurement sites. 

 
The above method thus seems to work and it can be useful for further checking the da-
tabase of torsion balance measurements. 

 
GEOID DETERMINATION BY LEAST-SQUARES COLLOCATION IN 
HUNGARY  
 
We are planning further tests by extending the validation procedure of this study to 
curvature values.  Furthermore it is desirable to use also other kind of auto- and cross-
covariance models, which fit better to the structure of the gravity field in Hungary.  
The present study was initiated with a new Hugarian geoid soulution in mind, i.e. to use 
the extremely valuable torsion balance measurements for such a solution. It is planned 
also that we are able use point gravity data in the framework of the existing cooperation 



 

 

between our university and ELGI. Furthermore the lithospheric model of the Panno-
nian Basin (Papp et al. 1996) as well as surface rock densities could be used to make 
gravity field data statistically more homogeneous. 
Our next tests will aim at the computation of gravity anomalies ∆g by collocation from 
gravity gradients using all existing measurements. In view of the large number of exist-
ing gravity gradients (the present number is about 50 thousand) the size of the covari-
ance matrix of measurements would be about 15 GB, stored in double precision. By 
considering points within a distance of 6 km only, however, a sparse matrix can be ob-
tained with 0.4% fill-in, and the size is thus reduced to 278 MB. Due to the fact that the 
horizontal gravity gradient is a 2-element vector, a 2x2 block matrix of measurement 
covariances will be yielded, and one such block with nonzero elements can be seen in 
Fig. 6. This covariance matrix is of manageable size and one can employ in-core and 
out-core sparse solvers (e.g. the 32-bit sparse solver library TAUCS, see Rotkin and 
Toledo, 2004).  
 

 
Fig. 6. Sparse covariance matrix block of gravity gradients 

 
SUMMARY 
 
Our test has shown that least-squares prediction may be suitable to validate the full da-
tabase of Hungarian gravity gradients (where the sites are closer to each other than 4 
km). After the validation process is finished, we would like to use these data in the near 
future for a new detailed and accurate local geoid determination.  
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