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Abstract 

 
 A program package for computers was developed to test empirical methods of 
interpolation of deflection of the vertical which can be used to determine deflections of the 
vertical by any method of interpolation either along triangulation chains or in networks 
covering arbitrary large areas. In the course of our test computations in Hungary first we 
compared different empirical methods of interpolation then we tried to get an answer to the 
question whether the reliability of interpolated data can be increased by introducing 
appropriate weighting. Another important object of our investigations was to determine 
optimal geometrical arrangement for interpolation networks. 
 Keywords: deflection of the vertical, torsion balance measurement, gravity gradients 
 
 

1.  COMPUTER PROGRAM PACKAGE FOR INTERPOLATION 
 
 The computer program package developed by us is able to determine deflections of 
the vertical based on torsion balance measurements either along triangulation chains or in 
networks covering arbitrary areas using any of the interpolation methods fully described in 
(VÖLGYESI, 1993). It can plot the interpolation network and vector diagram of interpolated 
deflections of the vertical, calculate geoid heights by astronomic levelling and also plot 
either perspective or isoline map of geoid for the area. 
 The operation of the program package developed for personal computers is 
visualized in Fig.1. 
 A catalogue file has to be created as a first step of the computing process which 
contains all known data of torsion balance measurements within the area to be processed 
(codes of measurement points, co-ordinates, second derivatives  ∆W  , Wxy  ), and the 

catalogue should contain the known values of deflection of the vertical for astrogeodetic 
points available. 
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 Besides the catalogue file another input file should be made for the program package 
which contains data of the interpolation network (the point codes of point pairs forming 
sides of triangles in a triangulation network should be given in pairs and those points should 
be noted where components of deflection of the vertical are known). 
 

 
Fig. 1 

 
 According to the process visualized in Fig.1. the first program of the package, named 
FGVINPUT, selects from catalogue file the data needed for process, using file containing 
data of the interpolation network, and depending on the interpolation method  to be used for 
further computation it produces input data set with, appropriate format for certain 
(FUGGOSUC,  FGVSUORT,  FUGGOVON,  FUGGOOLD,  FUGGOORT) programs. Here we 
can choose for example whether to perform interpolation with unreduced or topographically 
reduced torsion balance measurements; it can be given which point to choose as origin of 
the local co-ordinate frame and here it should be fixed which interpolation method will be 
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used for further computations. According to Fig.1 we can choose from the following five 
possibilities: 
 Program  FUGGOSUC  determines along arbitrary interpolation chains between two 
astrogeodetic points from torsion balance measurements direct values of components of 
deflection of the vertical in points of the chain by the successive elimination method 
discussed in (VÖLGYESI, 1993). Input data for program are: co-ordinates of the points of 
interpolation network; at each point either directly measured torsion balance  ∆W  and  Wxy   
second derivatives or  ∆∆W   and  xyW∆   values that are computed using these derivatives 
through the formula   UWW −=∆  ;  as well as known   11,ηξ    and   nn ηξ ,    deflections of 

the vertical at starting and closing points of chain. Using those data the program computes  
nij   length and  ijα   azimuth of each side of the chain; by using formula 
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calculates  Tij   values for each triangle side, its variances and covariances; and for these 

sides 
 
 ijijjiijji T=∆−∆ αηαξ cossin  (2) 

 
expression is utilized to get the  ijij ηξ ∆∆ ,   component differences; and so using these 

values and the input data unknown  ξ , η  deflections of the vertical an their variances are 
computed at points  of the interpolation network. Finally output files are generated by the 
program either to print out results or for an optional post processing. 
 By the program  FGVSUORT  the  ξ∆  , η∆   component differences of deflections of 

the vertical between points of an interpolation chain between two astrogeodetic points can 
be determined using given torsion balance measurements by the method of matrix 
orthogonalization. In input data of the program are completely identical with input data of 
the program  FUGGOSUC  and is similar to the  FUGGOSUC  program in that it can only be 
used to compute such interpolation chains for which deflections of the vertical are given at 
its starting and closing points. 
 Program  FUGGOVON  can be applied to compute not only simple interpolation 
chains but networks of arbitrary shape. Direct values of   ξ , η   components of deflections of 
the vertical at points of the network are determined by the program based on given torsion 
balance measurements by giving consideration to fixed   ξ , η   values at astrogeodetic 
points of arbitrary number and distribution. Input data for program are: co-ordinates of 
points of the interpolation network,   ∆W  and  Wxy   second derivatives which are measured 
directly by torsion balance or  ∆∆W   and  xyW∆   values computed from them; known  0ξ   
and  0η   deflections of the vertical at points of constraint of arbitrary number and finally 
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sides of interpolation network orderly (given by pairs of point numbers). By using these data 
it can be computed first by the program the length and azimuth of each side then the 
coefficient matrix and vector of constant terms of observation equations are set up, unknown   
ξ , η   values and their standard deviations are determined and finally output files are 
produced both for printing out the results and for an optional post processing. 
 Program  FUGGOOLD  is a modified version of program  FUGGOVON. Difference 
between the two programs lies in the fact that in the input data of  FUGGOOLD  sides of the 
interpolation network are not included because these are generated automatically by the 
program  FUGGOOLD.  Instead of the sides a maximum distance should be given very 
carefully; and neighbouring points (torsion balance measurement sites) are searched for by 
the program within this maximum distance where network sides can be formed. This 
program can very advantageously be applied to such "homogenic" areas where torsion 
balance measurement stations are lying from each other at an approximately equal distance 
and sides of nearly the same length will be resulted. 
 FUGGOORT  is considerably more capable a program than the preceding four and it 
can handle very large matrices and besides this it is the most fast and accurate among 
interpolation programs we programmed.  FUGGOORT can be applied to compute 
interpolation networks of arbitrary shape. Direct values of   ξ , η   components of deflections 
of the vertical can be determined through matrix orthogonalization adjustment process from 
given torsion balance measurements for network points by considering  fixed   ξ , η  values 
at astrogeodetic points of arbitrary number and distribution. Input data of program are 
identical with that of  FUGGOVON.  FUGGOORT  can handle very large matrices using a 
programming idea, hence interpolation networks containing several hundred points can also 
be computed and adjusted simply by its use. Moreover, this algorithm  may also be used 
very well to solve any such adjustment task of surveying, the coefficient matrix of which is 
large and sparse (containing many zero elements), because the coefficient matrix of 
observation equations can be stored up for the matrix orthogonalization adjustment process 
by saving much storage space. 
 The preceding five interpolation programs create data files of two types: the first 
displays computation results in the form of a table which can be viewed easily while the 
second is for purpose of post processing. During post processing − according to the sketch in  
Fig. 1  − we have the opportunity either to plot the interpolation network and interpolated 
deflections of the vertical or to plot detailed geoid map of the area by using computed 
deflections of the vertical.  
 The interpolation network and vector diagram of interpolated deflections of the 
vertical are displayed on the screen by program  FGVPLOTT  where the plot on screen can 
be directed from optionally to a printer or plotter if it is required. It can be selected from the 
menu system of  FGVPLOTT , among others, whether to draw on plot  point numbers of 
network points, to connect network points forming sides and whether to plot (and on what 
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scale) the vector diagram of interpolated deflections of the vertical. (It should be noted, 
however, that by this program without change one is able to plot any kind of a geodetic 
network). 

If a detailed geoid map of an area from interpolated deflections of the vertical is 
required, the way indicated in  Fig. 1  should be followed by. Detailed geoid map of the area 
of the interpolation network is computed by program  CSILLASZ  by astronomical levelling. 
Input data for program  CSILLASZ  are computed by utility program  FGVTOGRD , GRID  
and  GRDTOCSI  stepwise. 
 
 

2.  DATA OF TEST COMPUTATIONS 
 

The area surrounding Cegléd, as can be seen in  Fig. 2 ,  extended over some 1200 
km2   and well-measured by torsion balance was chosen for the purpose of our test 
computation. 

Distances between astrogeodetic points and density of the torsion balance stations 
among them in our test area, as can be seen in  Fig. 2 ,  correspond to average flatland 
conditions in Hungary; however in the upper area of the figure near  Pilis an  Albertirsa  it is 
apparent that torsion balance stations were located more densely as it was usual in the 
Hungarian Plain. This can be found along the southern extension area of  Gödöllő Hills  
where the change of gradients and second derivatives, that can be measured by torsion 
balance, is greater. 
 

 
Fig. 2 
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2.1.  Co-ordinates of interpolation points 

 
For our test computations in Hungary co-ordinates of torsion balance measurement 

stations in Budapest Stereographic System were available with the reliability of the order of  
m .  This was completely enough for us because  ±50 m  error in co-ordinates used for 
interpolation of  deflection of the vertical causes an error in the components of deflections of 
the vertical of only one hundredth of a second of arc  (BADEKAS-MUELLER, 1967).  

An arbitrary internal point in the given area it is suitable to choose as zero point of 
the co-ordinate frame  (VÖLGYESI, 1993). 

To this local frame the co-ordinate transformation 
 
 µµ sin)(cos)( 00 yyxxx −+−=′  
 µµ cos)(sin)( 00 yyxxy −+−−=′  

 
can be used to convert points; − where  µ  denotes grid convergence at zero point of the new 
(local) frame,  x0  and  y0   are co-ordinates of zero point of the local frame in the old frame. 
 
 

2.2.  Torsion balance measurements 
 

In our country torsion balance was used to measure a good many number of stations; 
very large part of the area of Hungary − first of all flatland and hilly areas of moderate 
height − were covered with network of torsion balance stations. As far as torsion balance 
measurements are considered Hungary is the most well-measured country in the world. 
Earlier torsion balance measurements were carried out mainly for the purpose of prospecting 
and for this end  only  Wzx   and  Wzy   horizontal gradients were processed. Nevertheless  ∆W  
and  Wxy   second derivatives are known at each measurement station also, which can be used 

in geodesy. Torsion balance measurement data are available for the area of Hungary in 
Eötvös Lóránd Geophysical Institute. 

Torsion balance measurement points' location in our test area is displayed in  Fig. 2.   
Stations were not located with the same density because − as we have mentioned − 
observations were carried out with a greater density of points in "disturbed" areas of rugged 
topography. 

To evaluate deflections of the vertical so called anomalies of 
 
 ∆∆∆ −=∆ UWW  

 
 xyxyxy UWW −=∆  
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should be used instead of measured   ∆W  ,  Wxy    values, where   ∆U   and  U xy    denote 

normal values of the second derivatives. 
 

 
Fig. 3 

 

 
Fig. 4 
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The above mentioned   ∆∆W   and  xyW∆   anomalies of second derivatives were 

determined in the test area for each station and isoline maps in  Fig. 3  and  Fig. 4  were 
plotted using these values. Isoline values plotted are in units of  2910 −− s  , that is  1 E 
(Eötvös). 

The following accuracies are characteristic of torsion balance measurement data, 
with the previous notations, 
 

7.12 ≈
∆Wµ  

5.12 ≈
xyWµ  

0, =
∆ xyWWC  

 
based on the detailed studies of  (BIRÓ - FÖLDVÁRINÉ - HAZAY - HOMORÓDI , 1965) and 
(BADEKAS, 1967), that is standard error of the   ∆W   values is  ±1.3E ,  of the   xyW   values is  

±1.2E  and the correlation coefficient can be treated as zero. 
 
 

2.3.  Corrections to torsion balance measurements 
 

Second derivatives measured by torsion balance include many kind of effects. For 
further processing − depending on the task torsion balance measurements are to be used for 
− different effects have to be considered and corresponding corrections may be applied to  

∆∆W   and  xyW∆   second derivatives. 

Mainly neighbouring topography and its density inhomogeneities have a 
considerable effect on the results of torsion balance measurements. It is usual to compute the 
effect of neighbourhood in two or three steps e.g.: (BADEKAS - MUELLER, 1967). There is 
not an uniform agreement as to the limits of computation, − we deal with the corrections 
according to the following division: 

1.  The effect of immediate neighbourhood of the measurement point up to  100 m  − 
the so called terrain correction  (δWs), 

2.  the effect of masses in the range between  100 and 5000 m  − the so called 
topographic correction  (δWt), 

3.  the effect of masses beyond range of  5000 m  − the so called cartographic 
correction  (δWc). 

Spirit levelling height data of the immediate neighbourhood are needed to determine 
terrain correction. The ground is usually made flat inside a circle of two-three meters of 
diameter around the torsion balance measurement point and it is usual to level 
symmetrically along  8  directions at  1.5, 2, 3, 5, 10, 20, 30, 40, 50 m  distance from the 
measurement point. Levelling beyond the  50 m  range is only for a greatly rugged terrain to 
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a maximum of  100 m  distance. Terrain correction is usually determined from levelling data 
by using graphs or tables. 

The accuracy of terrain correction is influenced by mainly three factors: 
− accuracy of measured height differences, 
− error of the approximate density value used in the computation, 
− departures of the real and its approximating model surface of the ground. 

Considering all the three error sources the standard error of terrain correction of 
both second derivatives is 
 

Es
xy

s WW
3±≈≈

∆ δδ
µµ  

 
according to investigations of (BADEKAS - MUELLER, 1967). 

Needed height data for computing topographic correction can be taken from 
topographic maps. The same method can be used to compute corrections as for the terrain 
correction. The same investigation of (BADEKAS - MUELLER, 1967) shows the standard error 
of topographic corrections: 
 

Et
xy

t WW
2±≈≈

∆ δδ
µµ  . 

 
Height data needed to compute cartographic correction can also be taken from 

maps. The very same method can be used to compute correction as for terrain or topographic 
corrections. The same investigation of (BADEKAS - MUELLER, 1967) shows the standard 
error of cartographic corrections: 
 

Ec
xy

c WW
1±≈≈

∆ δδ
µµ  . 

In our test area in Hungary the 
 

tst WWUWW ∆∆∆∆∆ −−−=∆ δδ  

and 
t

xy
s

xyxyxy
t

xy WWUWW δδ −−−=∆  

 
values were available at each measurement point as well, and isoline maps of  Figs. 5  and  6  
were drawn using these data. Labels of contour lines are in Eötvös unit. There was no reason 
for computing cartographic corrections in our test area because these corrections are 
negligibly small. 
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Fig. 5 

 

 
Fig. 6 

 
It is because of the test area surrounding Cegléd is flat the  tW∆∆   and  t

xyW∆   values 

can be considered practically − using a designation by Eötvös − subsurface anomalies. 
For the sake of simplicity  tW∆∆   and  t

xyW∆   values  corrected;  and as for  ∆∆W  and  

xyW∆   uncorrected  second derivatives they will be called later on. 

Using the law of error propagation, 
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EtW

3.4±≈
∆∆

µ  , 

 
Et

xyW
2.4±≈

∆
µ  

 
values are yielded for standard errors of corrected second derivatives. 

If isoline maps of our test area in Hungary,  ∆∆W   in  Fig. 3,  tW∆∆   in  Fig. 5,  xyW∆   

in  Fig. 4,  and  t
xyW∆   in  Fig. 6  are compared it can be seen that the relatively small 

corrections resulting from the nearly flat terrain do not affect considerably the appearance of  
∆∆W  and  xyW∆   second derivatives, they only simplify the picture a little. More significant 

variations can only be seen in the vicinity of Pilis where corrections are greater due to the 
more rugged topography of the southern extension part of Gödöllő Hills. 
 
 

2.4.  ξ and η  values for starting and checking the interpolation 
 

Six points can be found in the area of Hungary in  Fig. 2  where  ξ , η  deflections of 
the vertical are known. Each of these points is such that gravimetric (approximately 
absolute) deflections of the vertical are available based on gravity data; four of them 
(originally points labelled  1, 2  and  3, and later  27) are astrogeodetic points. Points  1, 2  
and  3  are starting and closing points of interpolation lines, points  13, 14  and  27  served 
the purpose of checking interpolated values. It is noted that only components of gravimetric 
deflections of the vertical were known at point  27  previously, however during the time of 
our test computations astronomic position determination was carried out by the Cartographic 
Institute of the Hungarian Army and so meanwhile this point became astrogeodetic stations 
as well. Relative deflections of the vertical provided by the documentation Department of 
FÖMI refer to a relative geodetic datum. 

The accuracy of relative deflections of the vertical at the astrogeodetic stations  1, 2, 
3  and  27  can be described by the standard error of astronomic position determinations, 
which is, according to (BIRÓ-FÖLDVÁRINÉ-HAZAY-HOMORÓDI, 1965) 
 
 2.0 ′′±≈≈ oo ηξ µµ  . 

 
Further examination is required if the accuracy of relative deflections of the vertical 

at astrogeodetic (checking) points  13  and  14  is needed, because gravimetric deflections of 
the vertical are directly available at these points instead of relative deflections of the 
vertical. If relative deflections of the vertical are also required at these points, one should 
know both relative and absolute deflections of the vertical at least three neighbouring points 
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in order to determine the mutual position of the relative and absolute ellipsoid along an area. 
Then relative (astrogravimetric) deflections of the vertical corresponding to known 
gravimetric deflections can be computed at these points. 

In the present case at astrogeodetic points  1, 2, 3  and  27  both relative and 
gravimetric deflections of the vertical are available and thus relative deflection components 
at points  13  and  14  were determined from gravimetric ones. The accuracy of relative 
(transformed) values that were determined so at points  13  and  14,  depends mainly on the 
accuracy of gravimetric deflections of the vertical, which is according to (BIRÓ-
FÖLDVÁRINÉ-HAZAY-HOMORÓDI, 1965) is 
 

5.0 ′′±≈≈ grgr ηξ µµ  . 

 
Because of the gravity effect of surface topography is also included in the known 

values of deflection of the vertical at the above listed points; and because of interpolation 
computations were also performed during one process of our test computations with  ∆W   
and  Wxy   second derivatives provided with topographic corrections also, hence topographic 

correction was necessary for known components of deflection of the vertical as well. This 
correction was determined according to the method of (RENNER, 1952) by considering 
surface topography of the innermost neighbourhood around computation points. 
 
 

3.  TEST RESULTS AND IMPLICATIONS 
 

It was the first important task of our test computations to test different methods of 
solution of interpolation and their intercomparision. The most suitable method can be 
chosen then as the result of this test. After this the problem of weighting is treated, and tried 
to throw light on the matter how the accuracy of interpolation is affected by the geometrical 
configuration of interpolation networks, i.e. what is the optimal geometric arrangement of 
networks. 
 
 

3.1.  Intercomparision of different methods of solution 
 

Practical solutions of interpolation can be classified to the following two main 
groups (VÖLGYESI, 1993): in the case  "A"   ξ∆  , η∆   differences of components of 

deflection of the vertical are treated as unknowns, and in the case  "B"   ξ , η   components 
of deflection of the vertical at points themselves are the unknowns to be determined by. 

In case of solutions of the group  "A"   (i.e. when    ξ∆  , η∆   differences between 

points are the unknowns) there are three possibilities of the interpolation: 
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A1:  the complete coefficient matrix, formed by the coefficients of  4n-6  equations 
of type 
 ijijjiijji T=∆−∆ αηαξ cossin  
 0=∆+∆+∆ ikkjji ξξξ  
 0=∆+∆+∆ ikkjji ηηη  

 ∑
−

=
+ −=∆

1

1
1,1

n

i
nii ξξξ  

and 

 ∑
−

=
+ −=∆

1

1
1,1

n

i
nii ηηη  

 
has to be inverted, i.e.  4n-6  unknown   ξ∆  , η∆   values are computed (VÖLGYESI, 1993). 

A2:  instead of  4n-6  unknowns we deal only with the absolutely necessary  2n-2  
unknown   ξ∆  , η∆   values and invert the corresponding coefficient matrix of smaller size, 

A3:  unknowns   ξ∆  , η∆   are determined stepwise (by successive elimination).  

When solving adjustment problems of a rather large size − because of the 
unavoidable accumulation of rounding errors during the computation − it is in any case 
feasible to look after some method which leads to the solution of an equation system with 
minimum number of unknowns (VÖLGYESI, 1979). If we do not want the unnecessary work 
of determining unknowns that are not required and we do not want to risk the accuracy of 
solution due to accumulation of rounding errors, then there is nothing to speak of case   A1  
later on since after all the same  ξ , η  deflections of the vertical are determined in the case  
A2  but through the computation of considerably fewer unknowns   ξ∆  , η∆ . 

The interpolation method elaborated by Renner (RENNER 1952, 56, 57) also belongs 
to the group  A1, where in its original form   ξ∆  , η∆   differences between network points 

were chosen as the unknowns and it required inversion of the complete coefficient matrix as 
well. Because of the above mentioned facts we will not deal with this method here. Though 
we performed test computations based on an adapted form of Renner's method − where not   
ξ∆  , η∆   differences are unknown but direct  ξ , η   values of interpolation points − but 

these results will be reported later on in the section dealing with suitable geometrical figures 
of interpolation networks. 

Special computer programs were developed for cases  A2  and  A3 . Only absolutely 
necessary   ξ∆   and  η∆   unknowns between points of interpolation chain connecting two 

astrogeodetic points are regarded as unknowns by both programs and they are determined by 
method of matrix orthogonalization by program  FGVSUORT  (VÖLGYESI, 1980) and by 
successive elimination (BADEKAS and MUELLER, 1967) by program  FUGGOSUC . 

Three different programs were made for handling case  B ; these are  FUGGOVON ,  
FUGGOOLD  and  FUGGOORT.  All three programs are suitable for computing interpolation 
networks of arbitrary shape by determining direct values of deflection components at 
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network points by considering  ξ , η   fixed values of arbitrary number and distribution. 
Conventional adjustment process is utilized by FUGGOVON and  FUGGOOLD  to calculate 
the unknowns while numerically more stable matrix orthogonalization process is used by  
FUGGOORT.  Program   FUGGOOLD  is a more efficient version of  FUGGOVON  which 
computes itself − on the contrary to program  FUGGOVON  − sides of interpolation networks 
automatically. 
 

 
Fig. 7 

 
Several test computations were performed by all above mentioned interpolation 

programs to examine and compare practical methods of solution of the interpolation. 
Computation results of the interpolation network connecting astrogeodetic points  1  and  2  
of our test area  (Fig. 7) will be presented in more detail. Computation results of different 
interpolation programs can be compared in tabular form for chain  "Cegléd 1-2/B"  in  Fig. 
7.  Output results of programs  FUGGOSUC,  FGVSUORT,  FUGGOVON,  FUGGOOLD  and   
FUGGOORT  can be found in  Table 1.  It can be seen that some results were provided by  
FUGGOVON  and   FUGGOORT  and values computed by  FGVSUORT  differ only few 
hundredth of an arc second by these. Interpolated values by  FUGGOVON  and   FUGGOORT  
at checkpoint  27  are the most close to known  ξ , η  values (difference of  ξ  is  -0.22"  and 
of  η  is  +0.16" ) but results are not much worse for  FGVSUORT  (differences here are  -
0.23"  and  +0.17" ). The interpolation network which can be seen on  Fig. 7  is a good 
example of cases where program  FUGGOOLD  must not be used. It is discernible that 
network points are substantially more distant from each other near the closing point  2  than 
near the other closing point  1 . Hence if such a distance is prescribed so as not a single point 
should be left where points are more distant from each other, then also redundant network 
sides are created where points are closer to each other along which the change of  ∆∆W  and  

xyW∆   values are no more linear. Such network sides can be seen on  Fig. 7  next to 

astrogeodetic point  1  which were connected by continuous lines by the computer. 
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Therefore − in accord with our expectations − differences are greater at check point  27  
with respect to known  ξ , η   values (difference are  -0.27"  and   +0.89" ). 

 
Table 1 

 
  point  FUGGOSUC     FGVSUORT     FUGGOVON     FUGGOOLD     FUGGOORT  
  no.    ξ”     η”     ξ”     η”     ξ”     η”     ξ”     η”     ξ”     η”  
    1  42.20  4.00  42.20  4.00  42.20  4.00  42.20  4.00  42.20  4.00 
  440  11.85  3.98  12.04  4.04  12.05  4.04  11.76  3.98  12.05  4.04 
  424  11.80  4.19  12.01  4.04  12.01  4.04  11.67  4.24  12.01  4.04 
  426  11.56  4.29  11.91  4.05  11.92  4.05  11.47  4.31  11.92  4.05 
  422  11.92  4.94  12.26  4.55  12.26  4.55  11.82  4.75  12.26  4.55 
  320  11.68  4.18  12.18  3.88  12.19  3.88  11.91  4.08  12.19  3.88 
  316  11.83  5.48  12.22  4.95  12.22  4.95  11.74  4.49  12.22  4.95 
  312  11.83  5.57  12.41  5.07  12.41  5.06  12.30  4.60  12.41  5.06 
  288  11.91  6.01  12.41  5.30  12.42  5.29  12.15  4.58  12.42  5.29 
  851  12.73  5.20  13.49  4.58  13.50  4.58  13.38  3.96  13.50  4.58 
  723  13.15  5.71  13.78  4.82  13.78  4.81  13.59  4.03  13.78  4.81 
  721  13.35  4.97  14.24  4.17  14.24  4.16  14.22  3.44  14.24  4.16 
  224  13.65  5.73  14.36  4.71  14.37  4.70  14.23  3.84  14.37  4.70 
  709  13.57  5.58  14.41  4.55  14.42  4.55  14.38  3.68  14.42  4.55 
   27  43.74  6.84  44.57  5.59  44.58  5.58  44.53  4.53  44.58  5.58 
  704  14.10  6.75  15.06  5.43  15.07  5.42  15.17  4.31  15.07  5.42 
  700  14.24  6.75  15.23  5.27  15.24  5.26  15.36  4.02  15.24  5.26 
  697  14.49  6.54  15.46  5.07  15.47  5.06  15.60  3.83  15.47  5.06 
  696  14.35  6.38  15.31  4.91  15.32  4.90  15.45  3.67  15.32  4.90 
  715  14.58  6.13  15.50  4.68  15.51  4.67  15.63  3.46  15.51  4.67 
  637  14.45  6.04  15.37  4.62  15.38  4.61  15.54  3.42  15.38  4.61 
  638  14.67  5.96  15.51  4.56  15.52  4.55  15.64  3.38  15.52  4.55 
  631  14.67  5.77  15.51  4.47  15.53  4.47  15.64  3.38  15.53  4.47 
  630  14.98  5.60  15.63  4.41  15.64  4.40  15.66  3.40  15.64  4.40 
  624  14.73  5.55  15.49  4.44  15.50  4.44  15.65  3.51  15.50  4.44 
  609  15.07  5.61  15.61  4.59  15.62  4.58  15.64  3.72  15.62  4.58 
  610  14.85  5.58  15.50  4.66  15.51  4.66  15.65  3.88  15.51  4.66 
  614  15.12  5.67  15.53  4.84  15.54  4.84  15.55  4.14  15.54  4.84 
  575  15.00  5.59  15.41  4.95  15.42  4.95  15.44  4.41  15.42  4.95 
  518  15.60  5.39  15.70  4.85  15.71  4.85  15.55  4.40  15.71  4.85 
  615  15.46  4.52  15.59  4.20  15.60  4.20  15.47  3.94  15.60  4.20 
  570  16.40  4.03  16.16  3.86  16.17  3.87  15.82  3.73  16.17  3.87 
    2  45.20  3.40  45.20  3.40  45.20  3.40  45.20  3.40  45.20  3.40 
    1  and  2 = given points; 
   27  = checking point:  ( ξ= 4.80”,  η= 5.42”) 

 
Interpolated values by program  FUGGOSUC  differ more sharply from previously 

mentioned computation results and from known deflection components at point  27.  
Difference  of  ξ  is  -1.06"  and of  η  is  +1.42"  at point  27. 

Of course different interpolation methods were examined through computation of not 
only the chain  1-2/A  but also through a number of other ones. Results of these 
computations are summarized in  Table 2. 

In this table differences of computed and known  ξ , η  values are indicated at 
checkpoints of different interpolation networks by the successive elimination method  
FUGGOSUC  and programs  FGVSUORT,  FUGGOVON  and   FUGGOORT.  Standard 
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deviations were computed using above mentioned differences that are characteristic to the 
accuracy of each interpolation method. 

Table 2 
 

     Sign of   check.      FUGGOSUC        FGVSUORT     FUGGO-VON/ORT 
     network   point      δξ”      δη”     δξ”      δη”     δξ”      δη” 
     11-2/A      27     -0.53   -0.75   -0.54   -0.74   -0.54   -0.74 
     11-2/B      27     -1.06   +1.72   -0.23   +0.17   -0.22   +0.16 
     12-3/A      13     -0.57   -2.34   -0.62   -2.51   -0.63   -2.54 
     12-3/B      13     +1.75   +4.70   +0.71   +0.93   +0.70   +0.89 
     12-3/B      14     +2.50   +2.07   +1.31   +0.38   +1.26   +0.27 
     13-1/A      14     -0.31   -0.68   -0.10   -0.48   -0.09   -0.58 
     13-1/B      14     +0.31   -0.10   +0.65   +0.15   +0.71   +0.26 

     Standard          ±11.27  ±12.23  ±10.70   ±11.08  ±10.69  ±11.09 
     deviations:           ±11.81          ±10.91           ±10.91        

 
According to the results of our tests which are summarized in  Table 1  and  Table 2  

to examine and compare different interpolation methods it can be stated that in most cases 
deflection of the vertical computed by successive elimination differed greatly from values 
yielded by other methods and in many cases they differed sharply from known checkpoints' 
values. There are nearly two times as great errors in values of deflection of the vertical 
computed by successive elimination as the interpolated values of different methods which 
fact can be seen from the data of  Table 2. 

The accuracy of results yielded by programs  FGVSUORT,  FUGGOVON  and  
FUGGOORT  can be taken as practically identical but unfortunately the possibility to apply  
FGVSUORT  is  somewhat limited because − similarly to program  FUGGOSUC − this 
program can exclusively be used in such interpolation chains the starting and closing points 
of which are astrogeodetic points. The chain can contain no other point of restraint besides 
these two astrogeodetic points. Any other known values of deflection of the vertical inside 
the network besides the two extreme points can only be used for checking. 

Output results of program  FUGGOOLD  are not presented in  Table 2  because it is 
useful to compute with different distance limits depending on point distribution and so by 
jointly comparing them would not have yielded a true, uniform representation of facts. Our 
examinations showed that the accuracy of programs  FUGGOVON  and  FUGGOORT  can be 
attained by program  FUGGOOLD  only if interpolation points are homogeneously 
distributed and the distance limit is appropriately small. Hence − even if it is very 
comfortable − only if our points are homogeneously distributed it is worth creating network 
sides by the computer. 

We haven't met such a task during our test computations for which it was possible to 
give preference to any of the two programs  FUGGOVON  and  FUGGOORT  depending on 
the accuracy of interpolated values. Nevertheless it is a crucial issue for preferring program  
FUGGOORT  that − on the contrary to program  FUGGOVON  − it can be used to compute 
interpolation networks of a very large size. 
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If final conclusions should be drawn from the results of our comparative tests it can 
be stated that the errors of deflections of the vertical computed by successive elimination are 
nearly twice as big, hence it is not suitable to apply method of successive elimination (to use 
program  FUGGOSUC ). In our test area when interpolation chains are computed programs  
FGVSUORT,  FUGGOVON  and  FUGGOORT  yield results of practically the same accuracy, 
but the application of program  FGVSUORT  is somewhat limited because it can only be 
used for such interpolation chains the extreme points of which are astrogeodetic points. In 
our examinations same results were provided by programs  FUGGOVON  and  FUGGOORT  
in all respect for chains with relatively few points expect that in networks of larger size  
FUGGOORT  is numerically more stable according to other tests, and it runs also if the 
number of unknowns is greater. Finally it can be concluded that it is very comfortable to use 
program  FUGGOOLD  instead of  FUGGOVON  but it is worth creating network sides by 
this program only where our points are homogeneously distributed. 
 
 

3.2.  The problem of weighting 
 

According to theoretical considerations (VÖLGYESI, 1993) during the adjustment 
process of interpolation two simple approximations were adopted: on one side since  Tij   

fictive measurements computed through equation  (1)  can be regarded as uncorrelated, 
hence the weight matrix is a diagonal one; on the other side since there are terms in the main 
diagonal of our weighting coefficient matrix which are proportional to squares of the side 
lengths therefore it comes out from the inversion that weights of our fictive measurements 
are taken as proportional to the inverse square of distance. 
 

 
Fig. 8 
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During test computations we tried to get an answer to the question whether accuracy 
of the interpolated values can be increased by this weighting. To this end computation of 
deflections of the vertical for networks on  Figs. 8, 9  and 10  were carried out without 
weights (using unit weights) and with weights previously mentioned. 
 

 
Fig. 9 

 

 
Fig. 10 

 
Computation results are summarized in  Table 3  where it is showed how large 

deviations resulted at check points of different interpolation networks  between known and 
computed  ξ , η  values which come from unit weights and inverse square weighting. Also 
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mean square deviations were calculated by these deviations which are characteristic to the 
accuracy of these two methods. 

By reason of these tabulated data it can be stated that the accuracy of interpolated 
values can be increased only by a little by introducing weights. In our test area the 
increasement is about  0.08” . 
 

Table 3 
 

         Sign of    check.   without weights      using weights 
         network    point      δξ”        δη”       δξ”        δη” 
         1-2/AB      27      -0.85     +0.30     -0.81     +0.11 
         2-3/AB      13      +0.88     +0.79     +0.80     +0.58 
         3-1/AB      14      +0.09     -0.21     +0.22     -0.03 
         Standard            ±0.71     ±0.50     ±0.67     ±0.34 
         deviations:              ±0.61               ±0.53 

 
A vectorial picture of values computed by weighting was drawn in  Figs. 8, 9 and 10  

as well. These vectors can either be considered as horizontal force components or direct   
22 ηξ +=Θ    values of deflections of the vertical. (The first differs from the second only 

by a factor of the vector  g ). 
According to our interpretation deflections of the vertical  can be considered as 

vectors when for positive direction of vectors the direction from ellipsoidal zenith towards 
astronomical zenith is chosen and for length of vector the absolute value of  Θ  is chosen at 
the point under question. Hence by using an appropriate scale either values of deflection of 
the vertical or horizontal force components can be read from the same figure. 
 
 

3.3.  Geometry of interpolation networks 
 

Coefficients  a1  and  c1  in the case of successive elimination method depend only on 
the network geometry whereas coefficients  b1  and  d1  are functions of partly the 
geometrical arrangement of network and partly of  ∆∆W  and  xyW∆   second derivatives 

(VÖLGYESI, 1993). In the first place let us examine  how standard deviations 
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will be developed according to different geometrical arrangement of networks. 
To this end let us compute how much misclosures can be expected by elimination 

method for deflections of the vertical determined according to the following three versions: 
− in the first version: when  ξ  values are fixed, when  ξ  component at both closing 

points are given and  η  component is given at only one of closing points; then parameter  u  
is yielded by the expression 
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− in the second version: when  η  values are fixed, when  η  component at both 

closing points are given and  ξ  component is given at only one of closing points; then 
parameter  u  is yielded by the expression 
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− and finally in the third version: when both  ξ  and  η  values are fixed,  when both  

ξ  and  η  components are given at both closing points and parameter  u  is yielded through 
the expression 
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by an adjustment process. 

In the above cases misclosures  w⌧  and  wO  of  ξ  and  η  components of deflection 

of the vertical are defined through the equations 
 
 '

nmnmw ξξξ ∆−∆=  (6) 

 '
nmnmw ηηη ∆−∆=  (7) 

 
where   nmξ∆   and   nmη∆    are differences of deflection components at astrogeodetic points  
n  and  m ;  nmξ ′∆   and   nmη′∆   denotes the sum computed by  (4)  or  (3)  in the case of fixed  

ξ  or  η  values respectively. 
Let the error of   ibΣ    in  (3)  and  (4)  be  bε   and the error of   idΣ    is  dε  .  Then 

value of   u0    free from error can theoretically be computed from  (3)  through the equation 
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On the other side it comes from  (8)  and considering  (7)  yields 

 

 dbn

mi
i

n

mi
i

a

c
w εεη −=

∑

∑

=

=   . 

 
It can be proved (BADEKAS and MUELLER, 1967) that 
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where   nmα   denotes azimuth of the line that connects two astrogeodetic points, hence 

 
 dnmbw εαεη −= tan  (9) 

Similarly 
 bnmdw εαεξ −= cot   . (10) 

 
It comes from expressions  (9)  and  (10)  that 
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that is closing error  w⌧  of component  ξ  is advantageously reduced when the  nmα   

azimuth of the line connecting initial and endpoint of interpolation network approaches   900  
or  2700  but it becomes infinitely large as  nmα   azimuth approaches  00  or  1800 .  In the 
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latter case even values of component  ξ  computed through adjustment  (5)  are extremely 
unreliable. (We face a completely similar but reversed situation for  ηw   values and 

components of  η ). 
 

 
Fig. 11 

 
Computations were performed to test the above statements along a chain, which can 

be seen in  Fig. 11  between stations  750  and  2  − where by a movement of point  750  by 
some  10m  in the  x  direction the azimuth of the line connecting starting and closing points 
of the chain (very close to  900 ),  83890

2750 ′=−α   was altered between the values of  32890 ′   

and  35890 ′ .  Computations were carried out in both directions   750→2  and  2→750  as 
well) with fixed  nmξ  ,  fixed  nmη   values; and with fixed   nmξ  and nmη   values according to 
adjustment  (5).  Misclosure of component  η  with fixed  nmξ   values are very high  

)51.15( ′′=ηw   in agreement with theoretical considerations and also standard deviations of 

interpolated values are very high. Computation results can be studied also in  Fig. 12  where 
it can easily be seen that as the azimuth of the fictitious line connecting starting and closing 
points approaches  900  the reliability of interpolation declines much (in the case of two 
fixed  ξ  at both endpoints and one fixed  η  component at only one of endpoints). 

A very similar defect arises for the case   )180(0 00=nmα    hence our test 

computations for this case no detailed presentation. 
We have tried to find an answer to the question in our test computations which 

arrangement of points of interpolation network is optimal so as to compute deflections of the 
vertical of the highest accuracy. To this end we compared the accuracy of interpolated 
values for single and double chains, for an arbitrary area and for point distribution by 
Renner. These computations were performed by the program  FUGGOORT  in each case and 
by weighting discussed in the previous chapter in order to be fully comparable. 

First computations were carried out along single and double chains as they can be 
seen in  Figs. 8, 9 and 10.  Single chains are: in  Fig. 8  between astrogeodetic points  1-2  
the upper  "A"  and the lower chain  "B" ,  in  Fig. 9  between astrogeodetic points  2-3  the 
upper  "B"  and the lower chain  "A" ,   and in  Fig. 10  between points  3-1  left side chain  
"A"  and right side chain  "B".  Double  "AB"  chains are: complete networks in  Fig. 8, 9 
and 10. 
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Fig. 12 

 
Interpolated results of single  "A"  and  "B"  chains and of double  "AB"  networks as 

the combination of these two can be compared in  Figs. 13,14 and 15.  Chains  "A"  and  "B"  
that are side by side to each other contain identical points for which the computation should 
give theoretically the same  ξ  and  η  values computed either along chains  "A"  or  "B".  
Interpolated values of identical points of neighbouring chains are connected by simple or 
broken lines in  Figs. 13, 14 and 15.  It can be seen that interpolated values of identical 
points of chains that are next to each other (simple and dotted lines) differ by much in most 
cases, sometimes the difference exceeds the value of  3".  It can be noted as well the greater 
the deviations in identical points of two neighbouring  ( "A"  and  "B" ) chains, the more 
favourable the picture when a combined  ( "AB" )  network from two chains is interpolated, 
because this latter lines (denoted in these figures by dashed-dotted lines) run in the midst of 
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the two greatly departed extreme values and in most cases they approximate better given  ξ , 
η  values at checkpoints as well. 

Results of computations were summarized also in  Table 4.  We have made a 
comparison in this Table between  computed and known  ξ , η  values that resulted in 
various networks at checkpoints. Standard deviations that are characteristic to the accuracy 
of interpolation were also determined based on the above differences for different kind of 
chains. 

 

 
Fig. 13 

 
It can be deduced from these tabulated data and from  Figs. 13, 14 and 15  that more 

accurate   ξ , η   values can be gained by computing along a double chain rather than along 
single chains. 

It was mentioned previously that test computations were also carried out by the 
interpolation method of Renner. We think proper the report on these results here as well 
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because our conclusions on this matter are basically related to the network geometry. As the 
principle of the method of Renner requires a square network of  1.5 km  length was applied 
to cover our test area  (Fig. 16).  It is because there are no torsion balance measurements at 
grid points of this network second derivatives  ∆∆W  and  xyW∆   were taken at these points 

as readings from isoline maps of  Figs. 3 - 6.  Hence basically a linear interpolation was 
applied to get second derivatives from torsion balance measurement at corner points of the 
square shaped network. (Empty squares were used to indicate such network points in  Fig. 
16  where no torsion balance measurements were made and second derivatives were 
determined by the above process.) As it can be seen in  Fig. 16  the square-shaped  network 
was located so that astrogeodetic station  3  is its corner point and  1  and  2  were attached 
to the network by triangles. Control points  13, 14  and  27  are corner points of the square-
shaped network so interpolated deflection values can be checked directly. 
 

 
Fig. 14 
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Fig. 15 

 
This network has 177 points altogether and 174 of these are points of unknown 

deflection values. There are altogether 348 unknowns because there are two unknown 
components of deflection of the vertical at each points and 542 equations can be written in 
all. 

Table 4 
     Part of   check.      Chain  A        Chain  B       common AB 
     network   point      δξ”      δη”     δξ”      δη”     δξ”      δη” 
     1-2/AB     27      -0.54   -0.74   -0.22   +0.16   -0.81   +0.11 
     2-3/AB     13      -0.63   -2.54   +0.70   +0.89   +0.80   +0.58 
     3-1/AB     14      -0.09   -0.58   +0.71   +0.26   +0.22   -0.03 

     Standard           ±0.48   ±1.56   ±0.59   ±0.54   ±0.67   ±0.34 
     deviations:                    ±0.91                   ±0.53        
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In  Fig. 16   22 ηξ +=Θ    deflection of the vertical which resulted from the 

computation were visualized in a vectorial form previously discussed. We may see in this 
figure that deflections of the vertical interpolated by the method of Renner differ 
considerably from known values at checkpoints drawn as thick line vectors. 
 

 
Fig. 16 

 
Computation results were summarized in  Table 5  as well. For the moment let us 

consider only the first part of this table where a comparison was made large deviations 
resulted between known  ξ , η  values and that of computed according to the Renners' 
method. Standard deviations  95.3 ′′±=ξm   and  06.5 ′′±=ηm   unfortunately prove that this 

method − at least in our test area − should not be applied. According to our investigations 
these large standard deviations and the inapplicability of the method under discussion are 
resulted from the following two main sources of error: 

1.  The grid distance of the square-shaped interpolation network by Renner is an 
unvaried value for the whole area. This may cause deep problems for areas where grid 
constant is larger than the maximum distance for which the differences of  ∆∆W  and  xyW∆   
values can be treated as linear. The linearity of differences of  ∆∆W  and  xyW∆   values 

between two points is but the most important prerequisite taken as fundamental equations  
(1)  and  (2)  were obtained through an integral approximation (VÖLGYESI, 1993). Such 
areas in our test field is the vicinity of astrogeodetic station  1  where according to  Figs. 3 
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and 4  this requirement evidently has not been met. This difficulty is hard to overcome 
because if grid constant reduced in the given area, then number of unknowns will increase. 

2.  An another source of error is the interpolation of  ∆∆W  and  xyW∆   values at grid 

points of the square-shaped network from measurement data of neighbouring points because 
there are no torsion balance measurements at these corner points. These interpolated second 
derivatives − mainly at such more "disturbed" sites as the surrounding area of point  1  − can 
considerably differ from actual values. 
 

Table 5 
 

          Check.        Renner’s method       program FUGGOORT 
          point           δξ”        δη”           δξ”       δη” 
           27           +2.89     -9.62        -0.69     -0.51 
           13           +3.84     -1.24        +0.54     +0.96 
           14           +3.95     -0.26        +0.55     +0.29 
          Standard      ±3.59     ±5.60        ±0.60     ±0.65 
          deviations:        ±4.70                  ±0.62 

 
To eliminate the above mentioned two sources of error it is useful to choose torsion 

balance measurement sites to be points of the interpolation network (in more disturbed areas 
according to the density of torsion balance measurements) with an increased point density 
and to interpolate an arbitrary shaped network instead of a regular square-shaped one. 
Recently, however, by applying modern computer technique there is no need to make our 
computations more simple by using a regular square-shaped grid. 
 

 
Fig. 17 
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The interpolation network in  Fig. 17  was created to get rid of these sources of error. 

This network has 206 points in all and 203 of these are points with unknown deflections. 
Since there are two unknown components of deflection of the vertical at each point there are 
406 unknowns for which 558 equations can be written. 
 

 
Fig. 18 

 

 
Fig. 19 
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In  Figs. 18  and  19  ξ  and η  components of deflections of the vertical are 
visualized in isoline maps that resulted from the computation. Besides this it was given in 
the second part of  Table 5  how large deviations arose with program  FUGGOORT at 
checkpoints between computed and known  ξ , η  values. Standard deviations  06.0 ′′±=ξm   
and  56.0 ′′±=ηm , computed from these departures at checkpoints corroborate the fact that 

even for large continuos  ξ , η  values of acceptable accuracy can be computed where the 
interpolation network is suitable. 
 
 

4.  SUMMARY AND CONCLUSIONS 
 

A program package for mainly PC and partly for larger computers were developed 
for actual computations which can be used to determine deflections of the vertical by any 
method of interpolation either along chains or in networks covering arbitrary areas, to draw 
interpolation network and vectors of interpolated deflections of the vertical. 

Test computations were performed in the area surrounding Cegléd, extending over 
some  1200km2  and well measured by torsion balance, where both topographic conditions 
and the densities of torsion balance and astrogeodetic stations reflects average flatland 
conditions in Hungary; more to this there was a possibility to check calculations because 
astrogeodetic and astrogravimetric data were available. 

During our test computations firstly we made a comparison between some practical 
methods of interpolation. First a conclusion was drawn that it is not advantageous to use the 
traditional Eötvös and Renner method because a considerable surplus work is done  when  
4n-6  unknown values are dealt with instead of the absolutely necessary  2n-2    ∆ξ  and  ∆η   
unknown components of deflection of the vertical at  n  points of the interpolation network. 
And this effects disadvantageously the accuracy of results in large networks since rounding 
errors are unavoidable to accumulate. Unfavourable observations were gained through the 
application of successive elimination method since it was established that deflections of the 
vertical computed by successive elimination have two times as big errors. Hence it is not 
practical to use this method as well. The most advantageous among practical solutions of 
interpolations are those methods of solution where directly  ξ , η  values are chosen and 
computed at points instead of  ∆ξ, ∆η  differences of deflection components between two 
points. In our test computations we gained the most favourable experiences trough the 
practical application of matrix orthogonalization process. 

An answer was searched for during our tests to the question whether the accuracy of 
interpolated deflections of the vertical can be improved by using appropriate weights. By the 
analysis of our calculations it can be established that the accuracy of interpolated values 
slightly increases when the observations, which are based on torsion balance measurements, 
are provided with a weighting inverse to the square of distance between interpolation points. 
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The accuracy of interpolated values in our test area was improved by a value of  80.0 ′′   
when the above weighting was applied. 

We intended also to determine the optimal geometrical arrangement of interpolation 
networks and it was treated as one of the most important problems. The results of our test 
computations have shown that the worst geometrical arrangement is to create simple chains 
between astrogeodetic points. It is extremely disadvantageous when successive elimination 
is used to create such simple chains where the azimuth of the line connecting the starting 
and closing points of the chain is close to   00 (1800 )   or  900 (2700) .  Nearest interpolated 
values to known deflections of the vertical at checkpoints were obtained when the 
computation was performed along double chains. In this case the standard deviation  

35.0 ′′±  of interpolated deflections of the vertical was yielded from known deflections at 
checkpoints. The worst results were provided by the geometrical arrangement of Renner 
between interpolation points in our test area. There were two major reasons for this as our 
investigations have shown. First, the same grid constant should not be used for all parts of 
the area since thus differences of  ∆∆W  and  xyW∆   between neighbouring points will not 

even approximately remain linear in more "disturbed" areas. Second, torsion balance 
measurement data must be interpolated for points of the square grid hence values so 
determined − especially in more "disturbed" areas − can deviate considerably from actual 
values. To eliminate these two error sources it is useful to choose torsion balance 
measurement sites to be points of the interpolation network (in more disturbed areas 
according to the density of torsion balance measurements) with an increased point density 
and to interpolate an arbitrary shaped network instead of a regular square-shaped one. 
Standard deviations  06.0 ′′±=ξm   and  56.0 ′′±=ηm   computed from deviations at 

checkpoints in such a network in our test area confirm the fact that even for large continuous 
areas  ∆ξ ,  ∆η   values of acceptable accuracy can be determined where the geometrical 
arrangement of interpolation network is suitable. 

If in some area of Hungary which was surveyed by torsion balance there were 
astrogeodetic points available with an increased density of points in the future it would be 
also important to test the optimal density of astrogeodetic points of restraint for 
interpolation, that is whether it is possible to decrease errors of interpolated deflections of 
the vertical by increasing number of astrogeodetic points. 
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