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Abstract 
Support vector machines (SVM) with wavelet kernel has been 

applied to the correcting gravimetric geoid using GPS/levelling 
data. These data were divided into a training and a validation set 
in order to ensure the extendability of the approximation of the 
corrector surface. The optimal parameters of the SVM were con-
sidered as a trade-off between accuracy and extendability of the 
solution in order to avoid overlearning. Employing 194 training 
points and 110 validation points, SVM provided an approximation 
with less than 3 cm standard deviation of the error and nearly 
perfect extendability. 
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1 Introduction 
The accuracy of the gravimetrical geoid can be significantly 

improved using GPS/levelling measurements. The new, adjusted 
geoid can be constructed as the old one plus the so called correc-
tor surface, the difference between the new and old geoid. 
Recently, wide variety of higher-order parametric and non-
parametric surfaces have been used as corrector surfaces, such as 
polynomial models Fotopoulos and Sideris 2005 [4], spline inter-
polation Featherstone 2000 [2] and Zaletnyik et al 2006 [13], least 
squares collocation (LSC) Iliffe et al 2003 [5], kriging Nahavand-
chi and Soltanpour 2004 [8], combined least squares adjustments 
Fotopoulos 2005 [3], and various other surfaces. Most recently 
Zaletnyik et al. 2007 [14] employed thin plate spline (TPS) sur-
face, solving the problem via finite element method. Suffice it to 
say, there are numerous surface − fitting options, each with their 
own advantages and disadvantages, which will not be discussed 
nor debate here. 

Concerning application of soft computing technique Kavzoglu 
and Saka 2005 [6] and Lao-Sheng Lin 2006 [7] employed artifi-
cial neural network (ANN) for approximating the GPS/levelling 
geoid instead of the corrector surface itself. Both of them applied 
feed-forward ANN with the standard sigmoid activation functions 
and different number of hidden layers. Zaletnyik et al 2006 [13] 
also used ANN but with radial bases activation function (RBF) 
and regularization in the training phase. Soltanpour et al 2006 [11] 
used second generation wavelets to approximate corrector surface 
directly. This technique let extend the classical wavelet approxi-
mation, which requires regularly spaced/sampled data, for unregu-
larly spaced dataset, Sweldens 1997 [12]. 

Another soft computing technique is represented by the support 
vector machines (SVM), which are learning algorithms that have 
many applications in pattern recognition and nonlinear regression. 
In this study we propose to apply support vector machine with 
wavelet kernel for modelling the corrector surface. 
 

2 Support Vector Machines for Regression 
The problem of regression is that of finding a function which 

approximates mapping from an input domain to the real numbers 
based on a training sample. We refer to the difference between the 
hypothesis output and its training value as the residual of the out-
put, an indication of the accuracy of the fit at this point. We must 
decide how to measure the importance of this accuracy, as small 
residuals may be inevitable while we wish to avoid large ones. 
The loss function determines this measure. Each choice of loss 
function will result in a different overall strategy for performing 
regression. For example least square regression uses the sum of 
the squares of the residuals. 

Although several different approaches are possible, we will 
provide an analysis for generalization of regression by introducing 
a threshold test accuracy, beyond which we consider a mistake to 
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have been made. We therefore aim to provide a bound on the 
probability that a randomly drawn validation point will have accu-
racy less than ∈. One way of visualizing this method of assesing 
performance is to consider a band of size ± ∈ around the hypothe-
sis function any training points lying outside this band are consid-
ered to be training mistakes, see Fig. 1. 

 
Fig.  1.  Linear ∈-insensitive loss function ),,( fyxL∈  

 
Therefore we can define a so called ∈-insensitive loss function. 
The linear ∈-insensitive loss function ),,( fyxL∈ is defined by  
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where f is a real − valued function on a domain nX ℜ⊂ ,  Xx∈  
and ℜ∈y . Similarly the quadratic ∈-insensitive loss is given by 
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Support vector regression (SVR) uses an admissible kernel, which 
satisfies the Mercer 's condition to map the data in input space to a 
highdimensional feature space in which we can process a regres-
sion problem in linear form. Let nx ℜ∈  and ℜ∈y , where nℜ  
represents input space, see Cristianini and Shawe-Taylor 2003 [1]. 
By some nonlinear mapping Φ, the vector x is mapped into a fea-
ture space in which a linear regressor function is defined, 

bxwwxfy +Φ== )(,),( . (3) 

We seek to estimate this f function based on independent uni-
formly distributed data }},{},...,,{{ 11 mm yxyx , by finding w 
which minimizing the quadratic ∈-insensitive losses, with ∈, 
namely the following function should be minimize 
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where w is weight vector and c is a dimensionless constant pa-
rameter. Considering dual representation of a linear regressor in 
(3), f(x) can be expressed as 
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which means that the regressor can be expressed as a linear com-
bination of the training points. Consequently using an admissible 
kernel, a kernel satisfying the Mercer's condition, Paláncz et al 
2005 [10], we get 
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By using Lagrange multiplier techniques, the minimization prob-
lem of (4) leads to the following dual optimization problem 
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where *α  is the solution of the quadratic optimization problem 

and *b  is chosen so that 
c

yxf i
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*
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−∈−=  for any 0* >iα . 

For samples are inside the ∈-tube, { }<∈− iii yxfx )(: , the cor-

responding *α is zero. It means we do not need these samples to 
describe the weight vector w. Consequently 
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These ix  sample vectors, }:{ SVixi ∈ , that come with nonvan-

ishing coefficient *α  are called support vectors. 
 

3 Wavelet Kernel 
In our case, we select wavelet kernel for 2=n , which provides 

better local characterization than other kernels, see Zhang et al. 
2004 [15] was proved to be very efficient in many regression 
problems, e.g. Paláncz et al. 2005 [10]. 

Wavelet kernel with 1ℜ∈a  and all compact nX ℜ⊂ , 
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4 Dataset for the numerical computations 
The original gravimetric geoid was modelled via third order 

spline approximation, which provides a fairly good approxima-
tion, a fitting with 1 - 2 cm error in height, see Zaletnyik et al 
2006 [13]. 

 
Fig.2. The Hungarian gravimetric geoid 
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For modelling the corrector surface, there are 304 GPS/levelling 

data available. One part of these data was employed as training set 
(194 measurements), the other part was used as validation set (110 
measurement), see Fig. 3. 

 
Fig.3. GPS/levelling data - the training set (circles), and the vali-

dation set (triangles) 
 

5 Parameter Study 
In order to achieve an efficient fitting, one should find the op-

timal parameter of the applied kernel function (a) as well as the 
proper values of c and ∈. Parameter investigations showed that 
with increasing values of c and ∈, the regression error (root mean 
square error, RMSE) decreases on the training and the validation 
set, too. In our case c = 400 and 310−∈=  proved to be reasonable 
values, while for greater values the changes of RMSE's are negli-
gable. 

However the value of the parameter a has a strong influence on 
the quality of the approximation. Table 1. shows the change of the 
sum of RMSE's (that of training and validation set, respectively) 
as well as the ratio of these RMSE's, namely introducing 

 
t

V

RMSE
RMSE

=η  (12) 

a ratio indicates how realiably can we extend our regression 
model for not measured data. The ideal value is 1. If h >> 1, then 
so called overlearning effect takes place. 
 

Table 1. The result of the parameter study in case of c =400 
and 310−∈=  

a tRMSE  
[cm] 

VRMSE  
[cm] 

totalRMSE  
[cm] 

η 

0.50 0.50 2.06 1.28 4.12 
1.00 1.64 1.94 1.79 1.18 
1.50 2.15 2.37 2.26 1.10 
2.00 2.31 2.57 2.44 1.11 
2.50 2.59 2.74 2.66 1.06 

 
Fig. 4 shows the corrector surface in case of a = 0.5 when the 

total error is small totalRMSE  (= 1.28) but h = 4.12 is high. 

 
Fig. 4. Corrector surface in case of typical overlearning (a = 0.5) 

 
This result indicates that one should make a trade – off between 

extendability (h) and regression error ( totalRMSE ). In our case we 
selected  a = 2.5, which ensures small h and acceptable RMSE as 
well as smooth regression surface, see Fig. 5. 

 
Fig. 5. Smooth and extendable regression surface 

 
6 The model for the corrector surface 
Using these parameter values (c = 400 and 310−∈= m and 

a=2.5) the computation with the wavelet kernel Eq. (11) was car-
ried out. We used the Mathematica implementation of SVM re-
gression, see Paláncz 2005 [9]. 
 
 

 

Table 2. Corrector Surface approximated by SVM 

 Training set Validation set  
Method SD 

[cm] 
Min 
[cm] 

Max 
[cm] VRMSE  

[cm] 

SD 
[cm] 

Min 
[cm] 

Max 
[cm] VRMSE  

[cm] 

η 

SVM regression 2.60 -7.74 6.47 2.59 2.75 -7.68 5.59 2.74 1.06 
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The analytical form of the corrector surface is 
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Table 2 shows that the standard deviation (SD) on the training as 
well as on the validation set is about 2.6 - 2.8 cm, which from 
practical point of view is acceptable and which is also important, 
that extendability coefficient is very good, near to unity. In the 
table RMSE- root mean squared error - is the square root of the 
mean of the error vector of the measurement points, 

( )∑ ∆−∆=
i

iii HHMeanRMSE 2),( λϕ  (14) 

The resulted corrector surface now is very smooth, see Fig. 5.  

 
7 Adjusted Geoid 
In order to get the corrected geoid, the corrector surface should 

be added to the original geoid surface, see Fig. 6. 

 
Fig.6 Adjusted geoid with the training and validation points 

 
 
 

 
 
 

8 Conclusions 
SVM with quadratic ∈-insensitive loss function was applied to 

constructing corrector surface for gravimetrical geoid, using 
GPS/levelling data. Employing wavelet kernel it turned out, that 
only the kernel parameter a has considerable influence on the 
quality of the approximation, while the SVM parameters c and ∈ 
do not play important role in this case. The optimal parameters of 
the SVM were considered as a trade-off between accuracy  and 
extendability of the solution in order to avoid overlearning. Em-
ploying 194 training points and 110 validation points, SVM pro-
vided an approximation with less than 3 cm standard deviation of 
the error and nearly perfect extendability. The corrector surface 
can described via analytical form and directly implemented in a 
high level language, like C, in order to get high performance 
evaluation. 

In the future, the investigation of the application of other type 
of kernel can be reasonable. 
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