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Abstract 

After more than 40 years of interruption new field observations 
have been made by an E-54 type torsion balance (TB). This origi-
nal balance of the Eötvös Loránd Geophysical Institute was re-
cently refurbished, and 15 TB stations have already been meas-
ured in the Csepel-island in addition to repeated measurements of 
two old stations that have measurements dated back to 1950. A 
detailed topographic survey of each measured station was also 
carried out. 

These TB measurements were accompanied by a detailed gra-
vimetric survey of each station with LCR gravimeters. Both verti-
cal (VG) and horizontal (HG) gravity gradients were determined 
at each TB station for VG interpolation and reliability tests. 

We experienced an adverse effect of the observer’s mass on the 
readings due to the sensitivity of the TB. This effect was captured 
by a video camera. The evaluation showed an effect of about 0.4 E 
(1E = 1Eötvös Unit = 10-9 s-2) for 1.5 minutes readout time and 
also a rapid increase with time. To eliminate this effect we plan to 
modernize the instrument for automated reading. 

Vertical gradient of gravity cannot be measured directly by the 
Eötvös TB. However, we successfully interpolated VG differences 
in the network of TB measurements following the idea originally 
due to Haalck. Reliability tests by comparing HG and VG gravim-
etric and TB measurements were also performed. Our recent pa-
per discusses first results of these TB and gravimetric measure-
ments which are scheduled to be continued in the future as well. 
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1 Introduction 
The purpose of the research presented in this paper is to use 

Hungarian torsion balance (TB) measurements in improved 
gravity field determination for Hungary in addition to a number of 
(about 300000) gravity data determined by gravimetry. There are 
about 60000 torsion balance stations in Hungary that have been 
measured primarily for prospecting of raw materials. Our previous 
studies e.g. Tóth, 2007 [7] and geodetic processing of torsion 
balance measurements made by Loránd Eötvös himself showed 
that these measurements are suitable for gravity field 
determination.  Also, it is possible to generate all functional of the 
gravity field by combining TB data with gravimetry. In order to 
verify these theoretical results in practice and to compare the two 
(gravimetric and gradiometric) gravity field determination 
techniques several tests have been made. 
 

2 Determination of the horizontal gradient of gravity  
We measured a test network of 300 m x 300 m spacing both by 

the balance and gravimeters in a flat terrain about 60 km south 
from Budapest, at the southern part of the Csepel-island. 
Distribution of points on the test area can be seen on Fig. 1.  

 

 
Fig. 1. Location of the torsion balance stations on the test area 
 
The horizontal gradients of gravity HG determined by 

gravimeters and torsion balance are denoted by sg  and zsW  
respectively: 
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where gx , gy and Wzx , Wzy are the N-S and E-W components of the 
horizontal gradients of gravity (the positive x-axis points towards 
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North and positive y-axis points towards East) and in an arbitrary 
direction of u according to the usual notation Völgyesi, 2002 [9]: 

uzu g
u
g

uz
WW =

∂
∂

=
∂∂

∂
=

2
 . 

Gravimetric measurements were performed with double star 
method (P-N-P-E-P-S-P-W-P-…) each of the four compass points 
(N, E, S, W) were located at 5 m distance from the centre point P 
(Fig. 2). ∆g values between these points were divided by 5 m to 
yield components of HG in µGal/m.  

 

 
Fig. 2. Gravimetric HG measurements by double star method 
 

Standard errors of sg  were calculated from repeated 
measurements according to the formula 

22
yxs ggg σσσ += . 

We used LCR gravimeters equipped with electronic levels and 
capacitance beam position indicator (CPI) electronics, and 
readings were taken by interpolation method on a digital 
multimeter with external R-C filter (Csapó, 2006) [3]. 
 

Tab. 1. Horizontal gravity gradients on the test area (gs from measurements 
of gravimeters, Wzs from torsion balance observations in Eötvös Unit*) and 
∆Hmax are the maximum height differences all around the points up to the 
horizontal distance of 100 m.  

* 1E = 1 Eötvös Unit = 10-9 s-2 

The mean standard deviation of our gravimetric measurements 
by LCR gravimeters for the horizontal gradients of gravity was ±5 
µGal (1 µGal =10-8 m/s2). This is better than the usual accuracy of 
gravity field measurements. The lower error can be attributed to 
the fast relocation of the instrument between measurement points 
with negligible adverse mechanical effects, and also to the fact 
that only minimal dial turning was necessary before taking 
readings. Gravity measurements on certain sites after several days 
with different weather circumstances were repeated (see Table 1 
points 22 and 33). Under favourable conditions (point 33) we 
found a good agreement, whereas for entirely different 
circumstances (point 22) the discrepancies were higher. 

We make a remark, however, for the rating of these results. The 
external conditions were very unfavorable for the TB 
measurements. The temperature in the observation hut increased 
rapidly by 7-8°C during the measurement and in certain days 
reached even 40°C whereas the vertical temperature gradient was 
7-8°C/m. The latter figure presumably caused adverse air 
turbulence inside torsion wire protecting tubes. 

Observations by the E-54 type torsion balance in 5 azimuths 
have been made by taking visual readings and after this repeated 
readings in the first two azimuths concluded the measuring series. 
First readings were taken 40-50 minutes after releasing the 
arrester of torsion wires, and hereinafter the readings were taken 
in a regular 40-minute pattern. The rotation of the beam was 
provided by mechanical clockwork. It follows from the 
construction of the double balance that each output quantity 
comes from two – partly independent – observations. The final 
result was the arithmetic mean referring for these two balances. 
The standard deviations of horizontal gravity gradients determined 
by the torsion balance were estimated from the differences and the 
effect of the observer’s mass was also investigated (Figs. 3 and 4). 
This mass effect during a 2-minute observation time was found to 
be about 0.4-0.6 E on average. These results were obtained by 
using an automated CCD reading system. 
 

 
Fig. 3. Effect of observer’s mass on the torsion balance readings 

 

 
Fig. 4. Magnified parts of the effect of observer’s mass on the torsion 

balance readings 

sg  zsW  ∆Hmax Point 
[E]* [E]* 

diff. 
 [E]* 

remarks 
[m] 

E238 6.5 ± 8.4 1.7  ±  0.2 4.8  1.95 
E208 8.4 ± 2.4 3.3  ±  0.6 5.1  2.16 

11 6.4 ± 3.2 –   1.83 
12 10.6 ± 5.6 5.2  ±  0.6 5.4  2.98 
13 10.2 ± 12.6 2.3  ±  0.2 7.9  1.63 
14 1.1 ± 2.2 0.4  ±  1.2 0.7  0.61 
15 1.5 ± 2.8 2.8  ±  0.6 – 1.3  1.35 
22 8.7 ± 5.4 –    
22 5.8 ± 5.7 1.6  ±  0.2 4.2 repeated 2.51 
23 6.3 ± 5.7 1.4  ±  0.6 4.9  1.52 
24 4.5 ± 4.3 0.8  ±  0.5 3.7  1.49 
25 3.8 ± 8.4 2.7  ±  0.5 1.1  2.63 
26 2.5 ± 3.6 1.7  ±  0.5 0.8  2.31 
33 4.8 ± 3.3 1.8  ±  0.2 3.0   
33 4.1 ± 3.2 –  repeated 1.60 
34 0.5 ± 4.8 2.4  ±  1.0 – 1.9  1.24 
36 5.0 ± 3.9 2.2  ±  0.5 2.8  1.44 
44 5.5 ± 3.6 0.7  ±  0.3 4.8  1.96 
45 4.9 ± 5.7 1.2  ±  0.4 3.7  0.52 
54 2.4 ± 5.0 1.3  ±  0.6 1.1  1.38 

 mean std.: ± 5.0      mean diff.:   3.0   
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The mean difference between gravimeter and torsion balance 
measurements is 3 µGal/m and this figure is smaller than the 
standard deviation of gravimeter measurements. 

The last column of Table 1 contains maximum height differ-
ences ∆Hmax of the topographic survey carried out in 8 azimuths 
around each measurement site up to the maximum distance of 
100 m. The maximum ∆H for the cca. 3 km2 test area is 3.67 m. 
Effect of the nearby terrain was negligible; the ground was care-
fully leveled around each site. 

From the comparison of TB and gravimetric determination 
of the horizontal gravity gradient it can be concluded that by 
LCR gravimeters equipped with electronic levels and CPI elec-
tronics and readings taken on a digital multimeter it is impos-
sible to have a reliable determination of HG. It is still best de-
termined by the torsion balance. 

 
3 Determination of gravity differences ∆g by gravim-

etry and the torsion balance 
Gravity differences ∆g between points were determined by LCR 

gravimeters mentioned in the previous section. Measurements 
were performed between 16 points at 4 different epochs and 
measuring series – simultaneously with 2 LCR gravimeters. These 
gravimeters were transported by a car between measurement 
points and base stations of measuring series. (Since all network 
points were mounted in plough-land, gravimeters were constantly 
put under adverse mechanical stress - shock by the transportation.) 

The measurements were processed with tidal, instrument height, 
barometric and drift corrections. (Non-modeled effects – thermal 
and mechanical stress – were reckoned in the drift correction.)  

The gravity differences ∆g shown in Table 2 are raw (non-
adjusted) values. It can be recognized from data in the differences 
(diff.) column that there is no scale bias between the two gravime-
ters. 
 

Tab. 2. Unadjusted gravity differences of the test network 

∆g 
LCR-220 

∆g 
LCR-1919 diff. mean 

connection 
distance 

[m] [mGal] 
E238-12 451.961 0.318 0.342 – 0.024 0.330
12–11 298.924 – 0.369 – 0.371 + 0.002 – 0.370
11–13 599.540 1.105 1.085 + 0.020 1.095
13–14 298.737 0.593 0.578 + 0.015 0.586
14–15 298.043 0.528 0.529 – 0.001 0.528

15–E208 599.259 0.636 0.649 – 0.013 0.642
E238–E208 1437.610 2.834 2.797 + 0.037 2.816

23–24 299.136 0.314 0.324 – 0.010 0.319
24–25 300.904 0.264 0.233 + 0.031 0.248
25–26 300.060 0.230 0.287 – 0.057 0.258
36–34 602.220 – 0.645 – 0.664 + 0.019 – 0.654
34–33 299.760 – 0.190 – 0.195 + 0.005 – 0.192
33–22 356.443 – 0.812 – 0.780 – 0.032 – 0.796
12–23 424.380 1.295 1.256 + 0.039 1.276
23–33 298.010 0.407 0.438 – 0.031 0.422
54–44 424.265 – 0.364 – 0.328 – 0.036 – 0.346

 
Gravity differences ∆g between stations can be evaluated upon the 
assumption that distances and height differences are small (Völ-
gyesi-Tóth, 2005) [10]. In this case horizontal gradients measured 
at two sites can be replaced by their mean values along the con-
necting line. Moreover, the effect of vertical gravity gradient on 
∆g was not considered. Hence the following approximate formula 
for obtaining the gravity difference ∆g between two points A and 
B can be written: 

AB
BzsAzs

AB tWWg
2

)()( +
=∆  . 

Here (Wzs)A and (Wzs)B are the components of gravity gradients 
along the direction of AB measured at the two points, respectively, 
while tAB denotes the distance between the two points. The result 
is expressed in mGal (1 mGal =10-5 m/s2). 

When gravity differences ∆g between the test network points 
were computed as above, it was observed that the variation of 
horizontal gravity gradients are not linear between the points. 
Hence, we followed another approach for determining the figures 
shown in Table 3. First, a digital terrain model (DTM) with grid 
spacing of 5m × 5m was constructed from 1:10000 scale topog-
raphic maps and a topographic survey carried out with total sta-
tions. Second, a mass model and a reference mass model with 
average height of the area were constructed from triangular prisms 
with uniform 2000 kg/m3 density. Third, gravity gradients were 
determined by forward gravity field modeling using formulas by 
Holstein, 2003 [5] for a grid with 50m × 50m spacing, and subse-
quently these gradients were used for interpolation of the nonlin-
ear change of gravity gradients between several network points in 
Table 3. Finally, gravity difference ∆g was computed between two 
such points as a sum of individual contributions ∆gi . 
 

Tab. 3. Comparison of ∆g from gravimetry and from torsion balance with 
nonlinear correction over the network 

connection 
∆g (gravimeter)  

[mGal] 
∆g (TB) 
[mGal] 

difference 
[mGal] 

E238-12 0.330 0.199 0.131 
12–11 – 0.370 – 0.168 – 0.202 
11–13 1.095 0.454 0.641 
13–14 0.586 0.166 0.420 
14–15 0.528 0.084 0.444 

15–E208 0.642 0.323 0.319 
E238–E208 2.816 1.057 1.759 

23–24 0.319 0.176 0.143 
24–25 0.248 0.053 0.195 
25–26 0.258 0.208 0.050 
36–34 – 0.654 – 0.116 – 0.538 
34–33 – 0.192 – 0.218 0.026 
33–22 – 0.796 – 0.313 – 0.483 
12–23 1.276 0.457 0.819 
23–33 0.422 0.158 0.264 

 
To asses the accuracy of ∆g from torsion balance measurements 

the following factors should be considered: 
1 – the horizontal position error is 1-2 cm 
2 – the standard error of torsion balance measurements is 5-6 E 
3 – 5 cm distance (tAB) error generates cca. 1.6 µGal error 
4 – 5° azimuth error produces cca. 1.3 µGal error 

We processed torsion balance observations at all of the 17 sites 
without drift and with assuming linear drift of the torsion wires. 
The accuracy depends on several factors. One of these is the vis-
ual readout error. If we estimate it to be about 0.2-0.3 scale divi-
sion, it produces 0.8-1.1 E and 1.7-3 E error of gravity gradients 
(Wzx, Wzy) and curvature values (W∆ =Wyy – Wxx , 2Wxy), respec-
tively. The error due to the nonlinear drift of torsion wires is more 
severe. Readings captured with a video camera showed a nonlin-
ear initial drift of 0.7 scale division, which may readily produce an 
error figure twice of the above. The accuracy achieved can be 
estimated from the sample standard deviation of differences be-
tween the two balances of the double balance. The following stan-
dard deviations and mean differences were computed by process-
ing 7 measurements in 5 azimuths with the linear drift model (Ta-
ble 4). 
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Tab. 4. Mean and standard deviation of differences between the two bal-
ances at all of the 17 sites (1E = 1Eötvös Unit = 10-9 s-2) 

 
standard 

deviation [E] 
mean 
[E] 

Wzx ± 5.3 3.8 
Wzy ± 6.2 -4.1 
W∆ ± 4.8 -1.0 
2Wxy ± 6.8 -0.4 

 
Measurements of the two balances are not entirely independent 

since the influence of certain environmental factors (e.g. tempera-
ture) on the readings is expected to be about the same. Having 
said that, however, the accuracy of TB measurements can be esti-
mated from the differences: mean standard deviation of differ-
ences at 17 stations is ± 6 E (± 0.6 µGal/m) with significant varia-
tion from one site to the other (extreme: ± 1.7 E and ± 12.4 E). 
Absolute values of the estimated linear drift also showed major 
variation of 0.1 – 1.7 scale division (s.d.) during the 40 min read-
out interval. From inspection of Table 4 it is evident that gradients 
of the two balances have a significant non-zero mean. Miscalibra-
tion or a yet undiscovered factor can be the culprit. A new calibra-
tion of the instrument is planned to settle this issue. 

Another source of errors is scale misreading. Site 14 may be an 
example of this, since a linear drift model yielded worse results 
than the no-drift model, and particularly at this site differences 
between the two balances of the double balance produced an ex-
tremely high standard deviation of ± 12.4 E and the highest drift 
estimates (-1.7 and -0.9 s.d.). 

As it has been mentioned, the observer’s mass effect is a sig-
nificant source of error, producing on average 0.4-0.6 E deviation 
within a 2-min interval. 

Several of the above errors are expected to be eliminated or 
mitigated by automated reading, a more realistic drift modeling, a 
better thermal insulation of the observing hut and perhaps thor-
ough a suitable choice of the reading sequence. 

Table 3 shows that a reasonable agreement was found at a con-
siderable number of sites between measured and interpolated ∆g if 
nonlinear variation of horizontal gravity gradients were taken into 
account. The cause of larger discrepancies of about 0.2 mGal in 
this table requires further investigation. 

 
4 VG determinations in a network of torsion balance 

(TB) measurements  
It is well-known that vertical gradients of gravity (VG) can not 

be determined directly from observations of the torsion balance.  
 

 
Fig. 5. VG measurement 

Tab. 5. Observed VG data 

linear approximation quadratic approximation
site VG 

[mGal/m] STDVG VG 
[mGal/m] STDVG 

11 – 0.3078 ± 0.041 – 0.3120 ± 0.041 
12 – 0.3064 ± 0.008 – 0.3099 ± 0.005 
13 – 0.3084 ± 0.011 – 0.3035 ± 0.006 
14 – 0.3001 ± 0.005 – 0.2982 ± 0.003 
15 – 0.3048 ± 0.013 – 0.3107 ± 0.006 
22 – 0.3053 ± 0.008 – 0.3063 ± 0.005 
23 – 0.3049 ± 0.009 – 0.3010 ± 0.005 
24 – 0.3066 ± 0.006 – 0.3027 ± 0.002 
25 – 0.3053 ± 0.012 – 0.3109 ± 0.006 
26 – 0.3050 ± 0.017 – 0.3012 ± 0.009 
34 – 0.3030 ± 0.012 – 0.3016 ± 0.009 

E208 (35) – 0.3065 ± 0.008 – 0.3080 ± 0.009 
44 – 0.3092 ± 0.011 – 0.3076 ± 0.006 
45 – 0.3120 ± 0.018 – 0.3190 ± 0.009 

B502 – 0.3189 ± 0.012 – 0.3202 ± 0.007 
E238 – 0.3074 ± 0.006 – 0.3083 ± 0.007 
mean – 0.3062  – 0.3067  

 
There is a certain technique, however, whereby vertical gradi-

ents can be calculated at each TB measurement site if one or sev-
eral VG values are available in the network (Tóth, 2007) [7]. To 
verify this, gravimetric vertical gradients were determined at the 
majority of TB sites of the test network (Csapó, 1999) [2]. Meas-
urements were made by two LCR gravimeters at heights 50, 700 
and 1300 mm above the markers (Fig. 5). Table 5 shows the mean 
VG determined by the two gravimeters for all the measured sites. 
Measurement accuracy was strongly degraded by the effect of 
variable intensity wind-forces (standard deviation (STD) of meas-
urements affected by intense wind-forces are indicated by bold-
face letters). 

The average VG over the test area is close to its normal (nomi-
nal) value (0.3086 mGal/m) and the deviations reach only several 
µGal/m for these sites. 
 
 

5 Application of Haalck’s method 
An original idea due to Haalck, 1950 [4] enables the determina-

tion of missing Wzz vertical gravity gradients VG from TB meas-
urements since third derivatives of the geopotential establishes the 
required link between observed and missing components accord-
ing to the following formulas: 

 

yzyxzxzzz

xyxyzzy

xyyxzzx

WWW
WWW
WWW

−−=
−=
−−=

∆

∆

2
2

. (1) 

To consider the nonlinear variation of gravity gradients, we 
prepared grids of gravity gradients with the aid of the digital ter-
rain model of the area with spacing of 50m × 50m. By numerical 
differentiation of these grids the necessary derivatives on the right 
hand side of (1) were computed, and at a constant height z above 
the mean sea level – by numerical integration of Wzzx , Wzzy using 
formulas of Vassiliou (1986) [8] – we obtained Wzz . The map of 
the computed Wzz (in E units) can be seen in Fig. 6, together with 
measurement sites and topographic survey points. The correlation 
of computed vertical gradients VG with the DTM of the area (Fig. 
7) is remarkable. Several conclusions can be drawn by testing the 
numerical solution procedure. 



Test measurement by Eötvös torsion balance and gravimeters 2009 53 2 79
   

 
Fig. 6. Interpolated vertical gradients VG for the test area from TB meas-

urements and DTM. Units are E (1E = 1Eötvös = 10-9 s-2). Dots are topog-
raphic survey points for TB sites 
 

 
Fig. 7. DTM of the test area. Heights are in [m]. Dots are topographic sur-

vey points for TB sites 
 

Tab. 6. Observed VG by quadratic approximation, interpolated VG by 
Haalck’s method and their differences 

observed VG  interpolated VG differences site 
[mGal/m] 

11 -0.3120 -0.3120 0.0000 
12 -0.3099 -0.3122 -0.0023 
13 -0.3035 -0.3113 -0.0078 
14 -0.2982 -0.3116 -0.0134 
15 -0.3107 -0.3130 -0.0023 
22 -0.3063 -0.3118 -0.0055 
23 -0.3010 -0.3116 -0.0106 
24 -0.3027 -0.3111 -0.0084 
25 -0.3109 -0.3111 -0.0002 
26 -0.3012 -0.3111 -0.0099 
34 -0.3016 -0.3103 -0.0087 

E208 (35) -0.3080 -0.3114 -0.0034 
mean: -0.3055 -0.3115 STD:  -0.006  

 
From Table 6 it appears that interpolated vertical gradients VG 

are considerably smaller (max./min. +27/-28 E for the whole area) 
than those obtained by gravimeters (cf. Table 5). This fact can be 
attributed to the applied numerical differentiation scheme (form-
ing central differences), the transfer function of which cuts down 
the signal at higher frequencies (Christmas, 2000) [1], or from the 
numerical integration procedure. The non-linear variation of verti-
cal gradients should also be a factor. The reconstruction of a func-
tion from given gradient fields is a well-known problem e.g. in the 
field of image processing and it leads to the numerical solution of 
the 2D Poisson equation e.g. Simchony et al. 1990 [6]. Hence we 
plan to investigate several other reconstruction techniques to cal-
culate of Wzz from its known horizontal gradients.  

 
 
6 Summary 
Earlier theoretical investigations and geodetic torsion balance 

measurements made by Lorand Eötvös showed that these meas-
urements are good for gravity field determination as well and it is 

possible by combining torsion balance with gravimetry to gener-
ate all functionals of the gravity field. 

From the comparison of torsion balance and gravimetric de-
termination of the horizontal gradients of gravity it can be con-
cluded that it is impossible to have a reliable determination by 
LCR gravimeters, it is still best determined by torsion balance. 

Computing ∆g from torsion balance measurements we realized, 
the variations of horizontal gradients of gravity between two 
points would not be supposed linear neither below of a few hun-
dred meters distance. However, generally better agreement can be 
seen between the measured and the computed ∆g taking into ac-
count a digital terrain model for estimating the nonlinear variation 
of the horizontal gravity gradients − but further investigations are 
necessary to study the reason of the bigger discrepancies. 

Comparing the vertical gradients measured by gravimeters and 
computing from torsion balance measurements various differences 
can be seen. The reason may come from the applied numerical 
differentiation scheme, or from the integration procedure. 
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