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Abstract

The topographic-isostatic potential of the earth's crust can be computed easily using average crustal density
parameters, a global isostatic model and a numerical dataset of mean continental and oceanic heights. In lack of
the detailed data for density, crustal thickness and isostatic compensation, a least squares estimation is
suggested to determine global horizontal variation of crustal parameters.

These variations can be determined using a minimum principle to yield a minimum variance high frequency
residual geoid. The basic mathematical tool for the determination of such parameter variation functions is the
Clebsch-Gordan product-sum conversion formula of spherical harmonics.

Computer programs were developed based on the above mentioned mathematical algorithm to determine
optimal linear topographic-isostatic crust models (OLTM). Previous calculations detected significant global
density variations inside the crust with respect to the simple Airy model of uniform crustal parameters. The
result would perhaps show us a better insight into the global isostatic behaviour of the crust.

Keywords: topographic-isostatic model, lateral density variations, spherical harmonics, isostasy of the earth's
crust.

1. Introduction

The behaviour of our earth's crust on a global scale is rather difficult to model. The
gravitational potential caused by mass irregularities inside the crust can only be predicted
using various crustal density models. On the other side the gravitational potential of the
earth's crust is included in the total gravity potential, which is well-measured on a global
scale.

The disturbing potential due to the density irregularities inside the earth's crust is termed
shortly fopographic-isostatic potential. It can only be evaluated through certain global
topographic-isostatic models.

The importance of such models is at least twofold.

1) They can be used to reduce measured gravity signal so as to make residual gravity

field as smooth as possible for prediction purposes.

2) Such models allow us to remove the disturbing effect of the crust and they produce a

clearer overall insight into the effect of deeper mass irregularities.

The conventional simple Airy-Heiskanen isostatic model was first investigated RUMMEL
et. al. (1988) developed a very efficient FFT-based (Fast Fourier Transform) - technique for
the computation of this model's topographic-isostatic potential. In the first part of this report
their method will be described and the results of our calculations with this model will be
presented.

In the second part of this report the detailed study of so-called optimal linear
topographic-isostatic models (OLTM) will follow. In these models a minimum criterion is



introduced to determine a topographic-isostatic model. This model physically is an optimum
Airy-type model with lateral variations in density, crust thickness and isostasy. It gives the
best possible agreement between topographic-isostatic potential and the earth's disturbing
potential. Finally, some results and conclusions will be considered for simple and optimal

Airy-type topographic-isostatic models.

2. Airy Topographic-Isostatic Model

The Airy model supposes that the light crust matter of density p,, floats on the more heavy
material of the upper mantle of density p, . Each crust “column” is in an equilibrium state.
This requires for ocean columns the anti-root thickness d* for ocean depth 4* ; and root

thickness d for land elevations /4 to exist. (Fig. 1).
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Fig. 1. Airy isostatic model

From the equilibrium equations
root-thickness: d = &h ,
Ap
Per — Pw h* ,
Ap

anti-root thickness: d~ =

where Ap=p, —p. and p, isthe ocean water density.
If the factor
=1 if k>0 and o =1-Lr
pC’)"

is introduced then the Egs. (1a, 1b) can be unified in one equation

d =L p =k
Ap
where

h<0

(1a)

(1b)
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h=Chh’ .

Here /4 is often termed as equivalent topographic height, and k& is the compensation factor.

For a flat earth (i.e. plane approximation), the compensation factor % is constant and
equal to

k=k,=—Po 3)
pm_pcr

For a spherical earth & will be slightly modified and it can be computed from the mass
balance principle of isostasy. It will become dependent on both 4 and D. (SUNKEL, 1986):

, -3 N3 5
i{p(l—gj koc{(l+h—j —1}} (4)
R-D R R

where R denotes mean earth radius (approximately 6371 km).

Even if this simple Airy model is not accepted as which reflects the real behaviour of the
earth's crust, it will be quite useful to investigate it first as computationally simple and
straightforward.

3. Spherical Harmonic Analysis of the Topographic-Isostatic Potential of the Simple
Airy Model

The simple Airy topographic-isostatic potential, 7*" is defined as the potential generated by
mass irregularities with respect to an ideal homogeneous crust (with density p,. and uniform

thickness D lying on a homogeneous mantle with density o). If dp denotes mass

irregularities according to the Airy model the topographic-isostatic potential of the volume
density distribution dp will be

T (P)= GJ j Jl (P,Q)5p(Q) av(Q) )
V
where G Newton's gravitational constant,
I(P, Q) spatial distance of P and Q,
dv volume element.

T*™(P) is harmonic outside a sphere and its spherical harmonic expansion is surely
convergent outside the sphere enclosing total mass of the earth. Outside of this sphere the
following series expansion is valid for /™'



I(P,0) = Z ”M(Q) P.(cosy/np) ©)

where r magnitude of radius vector,

¥ po angular distance of P and Q,
P Legendre polynomial of degree n.

n

If Uum , Vo denote fully normalized spherical harmonics of degree n and order m, their

definition is
A
nm(P) 21 00 (27’l+1)( ) P (COS@p) C.Osm r (7)
(n+m)! ’

Vim (P)

where @, polar distance,
A, longitude,
o0. Kronecker's delta,

ij
n=0,12,..; m=0,1,.
In the above expression the P (t) associated Legendre functions of degree n and order

nm

m are defined by the following equation:

P (0= L)y ®)

nm n d n+m

The P, (cosy p,) function can be decomposed into the sum

P.(cosypy) = ﬁz [T (P) U (0) + Vo (P) V (0))] - ©)

Inserting the expression (9) into the integral (5) will yield the following 3D spherical
harmonic representation of the topographic-isostatic potential of the Airy model:

n

T4 (P) = oM Z[E] Z(E::y cosmA, + S sin mA, P, (cos®,) , (10)
r

Tp P

n=l1 m=0

where M  total mass of the earth,
P normalized Legendre function, defined as

P, (f)= \/ 2190 (2 4 1) (n=m! p, t) (11)
(n+m

— Ai — Ai . . . . . . .
and Cpn , Sun are normalized spherical harmonic coefficients of the topographic-isostatic
potential of the simple Airy model with uniform crustal parameters. The summation in Eq.
(10) begins at n = 1 because there is no mass surplus or deficit in this compensation model.



4. Computation of the Spherical Harmonic Coefficients of the Simple Airy
Topographic-Isostatic Potential

In the following discussion we summarize the formulae necessary for the computation. The
detailed derivation and discussion of the above formulae can be found in the papers of
SUNKEL (1986) and RUMMEL et al. (1988).

Firstly we split up the topographic-isostatic potential into the following two parts:

Ai t
TAm —® L7 ,

where T denotes disturbing potential of topographic and T'° disturbing potential of
isostatic masses. The spherical harmonic coefficients of 7 are then

— @ n+3
Com | _ 3Pu U (Q)
{g;’;} P (2n+1)(n+3) 4m j ,[ [( ] ]{Vm (Q)}dG(Q . (12

where o =3M (op  mean earth density (5514 kgm™),

J‘ ..do denotes integration over the unit sphere.

The spherical harmonic coefficients of 7' for the simple Airy model will be expressed by
the integral expression

Cn | _3p, 1 T " Um0
1 s e

(13)

When a second order approximation is accepted for the computation of the spherical
harmonic coefficients of 7",

— Airy p=10) —(©)
C C C
=i S (14)
{Siﬁ} {Si&} {Siﬁ}
one gets the second order approximation formula for the computation of spherical harmonic
coefficients of the simple Airy model's topographic-isostatic potential. The result is

[ (rR=DY'|1 [[ho [Um(0)
) e e
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. (15)




The numerical FFT-based technique developed by COLOMBO (1981) is an extremely efficient
tool for the fast computation of integrals of the type

fj 'f £(0)do(0)
T

on the sphere. The expression (15) is well-suited for the application of O.Colombo's method,
and its application to the computation of Airy topographic-isostatic potential is well
established (see RUMMEL et al., 1988).

Let us introduce the following 2D (surface) spherical harmonic coefficients of the

equivalent topography:
hcnm _ L [ .@ Unm (Q)
{hsm} C4an)) R {?m <Q>}d0@ ey
hzcnm _ L [ .h(Q)z E”m (Q)
{hzsnm} C4r)) R {Vnm (Q)}dU(Q) (15

These integrals can be evaluated by the efficient FFT method and thus the coefficients (15)
may be obtained by the following equation:

el 3 p, 1_(R—Dj" |, n+2 1_&[1{_1))”‘3 h2c,,
Sw | @n+D) p R hs,, | 2 | Ap\ R h2s,

n=0,1,.. m=0,1,...,n . (17)

Now the practical computation of the potential coefficients of isostatically reduced
topographic potential of the simple Airy model is straightforward.

5. Computations with the Simple Airy Topographic-Isostatic Model

The computer programs HARMIN and SSYNTH listed in the report of COLOMBO (1981) were
adapted to Microsoft FORTRAN and also the Mixed-Radix FFT algorithm of SINGLETON

(1969). These programs were used to compute the hc, , hs h2c, , h2s  coefficients

from 1° x 1° mean topographic height dataset (64,800 mean height for the entire earth). This
dataset was kindly provided by H.SUNKEL on a magnetic tape to us in 1986. These 2D
spherical harmonic coefficients in Eq. (16) were then used to determine the 3D spherical
harmonic coefficients of topographic-isostatic potential complete up to degree and order 180.
The topographic-isostatic geoid computed with the uniform D =30km crust thickness can be
seen on Fig. 2.

The following statistical quantities were then computed to see the agreement between
topographic-isostatic potential of the simple Airy model and the gravity potential represented
by the RAPP (1981) model. If we define the differences of spherical harmonic coefficients

nm? nm



— — — Airy — Air . . .
Cwn , Swn of the observed gravity potential and C wm , Swm coefficients of the simple Airy
model topographic-isostatic potential

AC, =Coum—Com
nm _nm _:;n'y (183., b)
ASnm = Snm _Snm

then the first statistical quantity one may define is the root mean square (rms) undulation
difference ON between degrees n, and n,:

ny %

SN = RZZZ(AEim ASL) | (19)

n=n; m—0
The next quantity is the rms anomaly difference between degrees n, and n,:

b2

g = 722(71 —I)ZZ(AEim +A§im) . (20)
n=m m—0

Let us denote by o (T) the signal variance

o (T) = Z(Aaim £ ASi) (21)
m—0

of the observed gravity potential 7, the correlation coefficient by degree, ¢, is another
measure of potential coefficient fit,

n
— = Airy — = Airy
E (C nm Cnm + Snm Snm )
_ m=0
Cn =

c,(T)o,(T") 22

Finally the average correlation coefficient between degrees n, and n, is

3

5=;ch (23)
n, —n, +1

n=n

Table 1 shows the value of above statistical quantity for D = 30 km compensation depth.

The fit between the two potential coefficient sets is rather bad even in the higher degree
range when the greater part of the gravity signal is expected to be yielded by the topographic-
isostatic mass irregularities. This comparison clearly shows that this simple Airy model



cannot be expected to reflect the very behaviour of the earth's crust on a global scale, even if
it is physically more tenable than the Pratt model.

We agree with the following conclusion of the authors of RUMMEL et al. (1988): *Since
the isostatic behaviour of the earth is dependent on a number of factors, and considering that
such behaviour varies substantially from area to area, global models cannot be expected to
reflect the full picture.’

Even the simple Airy model depends on a number of factors, e. g. crust and mantle
density, crust thickness, etc. which may vary from area to area, so it seems reasonable to
allow the changes of these factors. This will lead us to the study of Airy type global isostatic
models with horizontally varying crustal parameters.

6. Lateral Variations of Crustal Parameters

When the compensation is complete, the following approximation is valid for the
topographic-isostatic potential (see SUNKEL, 1986):

T4% (P)=27GDp,c,h (24)

This approximation can be derived from the Eqgs. (10) and (17) by retaining only the linear
term in h in the Eq. (17). Let us allow now the p,, D parameters to be horizontally

variable, 1. e.

pcr (P) = ;C}‘ + Apci‘ (P) (25)
D(P) = D + AD(P) (26)
where ;cr average crust density (2670 kg m™),

D average crust thickness (e.g. 30 km),
then the AT "™ potential change will be linearly dependent on A(P):

AT*™ (P) = 22G[Ap,, (P) + AD(P)]c, h(P). (27)

To be more rigorous if we introduce horizontal changes of crustal parameters, the following
changes will result in the topographic-isostatic potential coefficients in Eq. (17), if we restrict
ourselves to the first-order term only:

Com _ DY |[An
ACw|__ 3 P 1_(1& Dj Com , (28)
AS.n| @2n+l) p R Ahs,,

where the 2D spherical harmonic coefficients Akc

Ahs, =~ are defined by the following

nm > nm

Ahe,,| 1 [f(hQ U unn (O)
{ Ahsnm}_ py. _”( R j@(Q){VW ( Q)}dU(Q) : (29)

equation:



Here we used the abbreviation o,(Q) for the following parameter function

Ap,(P) | AD(P)

0,(P) =
1( ) pcr D

(30)

which describes the total effect of horizontal variations in crustal density and crust thickness.
It clearly shows that if linear approximation is used it is impossible to separate the effects of
crust density and thickness onto the topographic-isostatic potential.

The effect of compensation disturbances will be examined next. In the spherical Airy
model when the compensation is complete, the root-antiroot thickness can be computed from
the equation (see RUMMEL et al., 1988)

P, R
t(P)= Ap (R—D)2 h(P) . (31)

When an area is isostatically over-, or undercompensated, the above condition is not valid.
Instead we may write the following equation

2

_Pa_ R
P = =D L+ r )Py (32)

where the (smoothly varying) f(P) function expresses deviations of compensation with

respect to the Airy model. The root-antiroot surface will remain linearly dependent on the
surface topography, but now the mass balance criterion is not satisfied. If the f(P)

parameter function is negative/positive, the area now becomes under/overcompensated
according to the traditional Airy hypothesis.

If we keep again only the first-order term in Eq. (17), the coefficient change due to the
imperfect compensation will be

P ) P B
ASw | @n+1) p R S Swm) S Sum

In this equation the f¢,, , f's,, coefficients are

few|_ 1 [[(hQ U (Q)
{ fsm}— 4”” ( p jf(Q){m ( Q)}dG(Q), (34)

Table 1
Average correlation coefficients between Rapp 1981 model and simple Airy model

Degree range 2-180 15-180 30—-180 90 — 180
c 0.486 0.504 0.496 0.436




Let us introduce now the following parameter function

Ao, (P)  AD(P)

Ocr

5(P)=6,(P)+ f(P)= +f(P), (35)

and the following 2D spherical harmonic coefficients of the product function [A(P)/ R]5(P)

hee,,| 1 [0 U (Q)
{hds} an I j ( R jg@{m (Q)}dG(Q) ’ o0

then the change in the topographic-isostatic coefficients will be

{Ag”’"}: & &Hp(—RD jn}{h&m}—{fc"’ﬂ . (37)
ASw | @n+D) p R ) |hs, ] S

The first term in this equation represents a double layer potential similarly to the linear term
in the Eq. (17). In the Eq. (33) the relative magnitude of the first to the second term is

1_(1{—0) ’

R

which ratio is tabulated for the compensation depths D=30 and 60 km for various degrees n
in Table 2.

Table 2
Relative magnitude of the double layer term in Eq. (37)
n 2 30 60 90 150 180
D =30 km 0.009 0.132 0.247 0.346 0.507 0.572
D =60 km 0.019 0.247 0.433 0.573 0.758 0.818

This comparison clearly shows that for the degree range 2 - 180 both terms should be
used in Eq. (33) for the computation.

The expression (30) shows that in linear approximation in (4/R), the effects of crustal
density and crust thickness anomalies cannot be separated, 1.e. only their sum, J,(P) can be
determined.

Now the following three combinations exist for the determination of horizontal
parameter variations in the crust.

Model 1. Determine the function J,(P) only (i.e. crust density and thickness are
variable, but perfect compensation is assumed everywhere according to the Airy hypothesis).

Model 2. Determine the function f(P) only (i.e. laterally variable imperfect

compensation, but constant crust density and thickness).

10



Model 3. Determine both functions J,(P) and f(P) (i.e. neither crust density/thickness

nor compensation is treated as fixed).

Mathematically models I and 2 are equally simple but the results will certainly be
distorted by the effects of changes in certain neglected parameters (for model 1
compensation, for model 2 crust density/thickness). The model 3 seems to be the more
realistic although it requires mathematically the determination of two parameter functions
simultaneously.

7. Optimum Criterion for Topographic-Isostatic Crust Models

The gravity potential of the Earth includes the topographic-isostatic potential of the real crust
of the Earth. This potential is included in the gravity potential in such a way that the shorter
the wavelength of the gravity potential terms in the spherical harmonic expansion, the higher
the contribution of the topographic-isostatic potential is to it. This fact is due to the rather
shallow source depth of the topographic-isostatic potential. Simply saying the crust should
become the most important density source of the gravity potential as the frequency increases.
This also means that the shorter the wavelength, the smaller the disturbing effect of other
masses is.

If the topographic-isostatic potential is modeled, our model has to reflect the gravity
potential well at short wavelengths. This criterion can be used to judge between such models.
From this point of view, the above criterion may be used to select a best or optimal model.
This optimality criterion will be investigated next.

Let

2 - — —model — — model
(o2 (AT) = Cnm _Cnm + Snm _Snm (38)
m=0

denote the signal variances of the residual AT =T —T™"¢ gravity potential field, where T

is the earth's, and 7™“ is our ‘best' topographic-isostatic model's anomalous potential. The
optimum criterion

Zﬂna,f (T') = minimum (39)

with the de-smoothing factor, [, expresses a minimum condition for the residual anomalous

potential field in the degree range n, —n,. This way the high frequency part of the residual
field will be minimized and it yields a topographic-isostatic model which approximates best
the short wavelength anomalous potential field.

The de-smoothing factor [, amplifies the higher frequency residual anomalous potential
field components, and it can be determined in various ways. In the following discussion we
present a purely theoretical approach to determine £, .

Let us assume that the density inhomogeneities are uncorrelated, i.e. they have an ideal
“white noise' distribution inside the earth. Their covariance function is then

11



cov[Ap(P), Ap(Q)]= CS(P.Q) (40)

where 6(P,Q) now denotes the 3D Dirac delta “function'. From covariance propagation
through the integral

r(pP)= GJ"UZ “(P,Q)Ap(Q)dR(Q) (41)

one may derive the covariance function of 7 arising from the density distribution inside the
spherical shell between radii R, and R,,

cov[T(P), T(Q)]= 4zzGZCRZ T 1)1(2n 3 K%} - (%j }; (CoSW ) (42)

where points P, O, lie on the earth's surface and P, Q are inside the spherical shell. If we
compare this expression to the

cov[T(R), T(Q))]= Zﬁf (T) P, (cosy g, ) (43)

covariance function of anomalous potential 7, we get the theoretical signal variances of 7 for
the spherical shell as

2 2n+3 2n+3
orry=— TR [ (#4)
2n+D2n+3)|\ R R
Let now D_, denote the maximum depth of crustal density anomalies. The

o2 (T) Do /o?(T) ratio then theoretically should increase as the following de-smoothing

function

2n+3
R-D
=1 | 45
g1+ j 5)

Values of this function S, are tabulated for D,, = 70km in Table 3.

Table 3
Theoretical de-smoothing function for maximum crustal depth 70 km

n 2 30 60 90 150 180
D_.. =T70km 0.074 0.501 0.743 0.868 0.965 0.982

12



The function £, shows the increasing theoretical signal variance of the gravity anomalous

potential generated by the crust relative to the total signal variance of the anomalous
potential.

8. Optimal Linear Topographic Model Determination

The determination of an optimal linear topographic-isostatic model requires mathematically
the determination of one (two) optimal parameter function(s) o, and/or f, defined on the

surface of the earth. For the sake of simplicity the determination of only one parameter
function 6, will be discussed in detail next. The computation of more than one parameter

function will be quite straightforward then.
In the following discussion let 6(®, A1) denote the following parameter function

0(0,1) = o 5 (46)
where ®,4 polar distance and longitude,
p.. ~ mean crust density,
D mean crust thickness.
This equation corresponds to Eq. (30) and Model I in Sec. 6.
The spherical harmonic coefficients E::del , §::del of the optimal model will then be

computed from the formulae below, which are analogous to the expressions (28) and (29).

— model — Airy
Cnm héc Cnm
{Emodel } {h&? } + {EAlry } : (47)

Here E:rln’) , 33;0 are determined by the expression (15),

f=—> Pl [RD) (48)
2n+1) p R
and the 2D spherical harmonic coefficients in Eq. (47) are
h(® /1) 5( AN — Unm(©.4) sin®dOdA . (49)
47r Vo (©,1)

These are the surface spherical harmonic coefficients of the product function (h/ R)6 . In the

following we shall see how they may be represented by the 2D spherical harmonic
coefficients of its component functions.

13



Let the functions 4 and & be represented mathematically by the following 2D spherical
harmonic series and coefficients:

h©. 1) = Riz e, Ui (@, 2) + hs, Vi(©,2)] (50)

=0

5(0,4) = ZZ loc, U4(©.,2) +0s,73©,2)] . (51
{hc”‘} j J- h(® ’1) {U”‘ ©®, M}sin@d@ i (52)
hs, | 4r Vi(©,)

{ } JJ‘( {”(Gﬂ;}sin®d®d/1. (53)

In analogy to the theory of ordinary Fourier series, where to a convolution of two functions in
the space domain there corresponds a simple product in the frequency domain and vice versa;
now to a product of two functions on the sphere there corresponds a "convolution' in the
discrete “frequency' domain between the 2D spherical harmonic coefficients. The
mathematical tool needed for such a computation is the product-sum conversion formula of
spherical harmonics (see Appendix A).

In an abbreviated form the following relationship holds for the determination of #4dc
hos,, coefficients:

h&nm - i acc(n’m’i’j) acs(namaiaj)
:ZZ _Topoc; + oS, (54)
hé:gnm asc'(n’m9l9]) ’ ass(n’m’l’]) ’
i=0 Jj=0

a, coefficients can be determined from the hc,, hs, 2D spherical

cs SS

nm?>

The a,, a,., a

harmonic coefficients and the Clebsch-Gordan coefficients. The definition and a practical
computation method of Clebsch-Gordan coefficients can be found in Appendices B and C.
Detailed derivation of the expression (54) can be found in Appendix A and thus the following
equations will be obtained for the a,_,, a,,., a,, a, coefficients:

sc 2

cec? sc 2 cs

14
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:Z QD@D 1 00,0,0) 1 8
1 2(2n+1) \/(1 +3,0)(1+5 )

Ss

[STEEES TR S TR

hc,,m_j ]
6 1 S L it
" _hSl,m—j
hc,,m_j
C@,l,n; j,m— j,m)
he,
i-m _hsl, j—m . .
X but (-1)"" J(1+5_,,) hS,,(,im , ifm< (55)
he,
hc,,mﬁ.
. hs, .
+CGlum; — jom+ jym) (1) J(1+3 ) h”m /
, - Sl,mfj
hc,,mﬁ.

In this equation the summation according to the index / must be done for all the values of /

where the C(i,/,n; j,k,m) Clebsch-Gordan coeflicients in this expression do not vanish. The
0, symbol here denotes the Kronecker delta.

ij
Now we introduce the matrix elements

Acc'(q;r) acc(nﬂm; lﬂ.])
A G| _, Jac(nm: 1))

=1, . (56)
A.(q;r) a,(n,m; i,j)
A, (g;7) a,(n,m; i,j)
of the matrices 4., A4,., A4,, A, arranged according to the single indices

g=n(n+1)/2+m+1 and r=i(i+1)/2+ j+1 and similarly the column vectors oc, 0s,

cmodl  gmedel - CAY - SAY arranged according to the single indices » and g, respectively.
With this notation the Egs. (47) and (54) will result finally in the following linear system of
equations:

...... =i e e [ [ ] e (57)

15



The optimal parameter vector [oc, os]T may now be estimated (up to a certain maximum
degree and order i, =K ) to make the variance of the high frequency residual field

minimum according to the condition (39). This is mathematically a well-known least squares
estimation procedure for the optimal parameter vector.
This way the optimum parameter function 6(®,A) through its 2D spherical harmonic

coefficients will be determined. The computation of the spherical harmonic coefficients of
topographic-isostatic potential of our optimal linear model (OLTM) from the linear system
(57) is quite simple.

9. Numerical Results

Computer programs and subroutines were developed in MS FORTRAN to determine optimal
linear topographic-isostatic models. Subroutine NORMCP computes the arrays of the linear
system and the normal equations. Subroutine GAUSS solves the normal equations and main
program CRUSTPAR determines the optimal model coefficients. Some statistical quantities
are also computed to judge the fit between our model and the Earth's anomalous potential.
For our previous calculations the spherical harmonic coefficients of the anomalous
potential of the earth were the RAPP (1981) coefficients limited up to degree and order 90.

The 1° x1° average height dataset of H. SUNKEL was used to produce 2D spherical harmonic
coefficients of the equivalent topography up to the same degree and order 90.
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Fig. 2. Optimal crustal parameter function up to spherical harmonic degree K=8

Optimal linear topographic-isostatic models were computed up to K =i _, =8 and 12.

The OLTM was as described by Model 1. The optimality criterion was as described by Eq.
(39) and for the S, de-smoothing function D, =70km was used in Eq. (45). The average

crust parameters were p, =2670kg m™, D=30km and Ap=600kg m™>. The second



order approximation of 7" was used in Eq. (15) and the fit interval was chosen to be in the
spherical harmonic degree range » =60—-90.

Computed optimal parameter functions for K =8 and 12 can be seen in the Figs. 2 and
3. The topographic-isostatic geoid differences for K =12 are shown in Fig. 4. Correlation
spectra for the simple and OLTM models are shown in Fig. 5.
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Fig. 4. Optimal topographic-isostatic vs. Airy model geoid height differences for K=12 model
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Fig. 5. Geopotential vs. OLTM model correlation spectra for the fit range 60 - 90
Table 4 shows the average correlation coefficients (22) in various degree ranges for Airy
versus OLTM models.

Table 4
Average correlation coefficients of various topographic-isostatic models

Degree range 15-90 30-90 60 - 90

Simple Airy 0.576 0.583 0.559

OLTM K=38 0.617 0.631 0.634
OLTM K=12 0.623 0.643 0.659

These previous results were derived from the simple Model I and in the relatively low
degree range 60 - 90. Further investigations are planned to derive OLTM for the higher
degree range up to n =180 and with higher resolution of the parameter function (higher
K =i, . Calculations are also needed with Model 2 and 3, and with other minimum

principles. The effect of smoothing of root-antiroot surface according to the physically more
realistic Vening-Meinesz model we would like to investigate as well.

10. Conclusions

Our previous results show that a clear improvement of global topographic-isostatic models,
compared to the simple Airy model can be achieved by allowing horizontal change of the
crustal parameters. Our results also show that significant departures must occur on a global
scale due to crust density and thickness change with respect to the Airy model of uniform
crust parameters. These departures vary from area to area and they show the complex
behaviour of the crust. Large negative values resulted for areas of significant ice coverage,
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because no ice thicknesses were included in the topographic height dataset. Negative values
are mostly correlated with large mountain zones and ocean bottom areas. Positive values are
associated with ocean trenches and old continental massifs. These results suggest the
nonlinearity of compensation, i.e. there is no strict linear relation (1) between topographic
heights and root thicknesses.

Of course it is hard to interpret these previous results of Model 1 physically, but it is
expected that the physically more relevant Model 3 with higher resolution will be a more
adequate tool to support some global mechanism of isostatic compensation. We think that in
the lack of accurate global geophysical data, the anomalous potential field still remains a very
important source of information to support or reject any global mechanism of isostatic
compensation.

Finally it should be mentioned that the whole procedure is rather independent of the
choice of the original topographic-isostatic model. It can be used with various topographic-
isostatic models as well. The only assumption is that the model change should be in linear
relation with topographic heights.

Appendix A
The Spherical Harmonic Product-Sum Conversion Formula
Complex spherical harmonics
Let us introduce the following complex spherical harmonics (ROSE, 1957):

o —0,1,...
Y (©,4)=e™Pr(cos®) , (A1)

m=-n,..—1,0,1,..n»

where i denotes imaginary unit and P, cos(®) is defined by the following equation:

2n+1)(n—m)!

P, cos(®) = (—1)’”\/ 1 ' P"(cos®)
+m)!
z(n+m) (A2)
n=0,1,...
m=-n,..,0,..n
Here the P (¢) functions are defined through the expression

m/ dmm" 0 =0,1,..

Pry=— -2y gy, " . (A3)

2"n! de™™" m=-n,..0,..n

The defining Eq. (A2) is a useful extension of the associated Legendre Functions for the
negative m values. If such definition is used, the following symmetry relations

P, (cos®) = (—1)" P, (cos ®) (A4)
and
Y, (©,1)=Y, (0,-1)=(-D"Y,

nm n,—m

(©,4) (AS)
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will hold for the associated Legendre functions and complex spherical harmonics. Here the
sign ~ denotes complex conjugate.

Orthogonality relations

Th orthogonality relation of complex spherical harmonics (A1) is

2r 7w

jjyn; (©,1)7,,.(0,1)sin®@d® di=5,76,. . (A6)

nn mm

00

Triple product integral (see ROSE, 1957)

_[ I Y, (P)Y, (P)Y,, (P)do(P)=
o (A7)

C(n,, n,,n,0,0,0)C(n,n,, n;m, m,, m)

\/(an +1)(n, —m)!

47(n+ m)!

where C(n,, n,,n, m;, m,, m) denotes the Clebs-Gordan coefficients (see Appendix B).
Now we are able to derive the

Complex spherical harmonic product-sum conversion formula

for the complex coefficients.
Let the functions a(®,4) and b(®,1) be expanded into the following 2D spherical

harmonic series
a(®,1) = Z Z A7, (0,4) (AB)

n=0 m=-n

b(®,1) = 2 2 B Y (©,1) (A9)

n=0 m=-n

with the complex 4, , B, coefficients. Now the question is how to determine the complex

nm nm

Zspherical harmonic coefficients of the product function

nm

2(0,1) = a(®, 1) b(®, 1) = Zsz Y, (©,4). (A10)

n=0 m=-n

Now if we substitute the expressions (A8) and (A9) into the left side of Eq. (A10) and
perform index change, the result is the equation
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0 3 0 ny e ny
: : 'Z”3m3 Yn3m3 (®’ /1) = y y:y: y:Bnlml A712m2 Ynlml (®’ /1) Yn2n12 (®’ /l) . (Al 1)

n3=0 my=-nj n=0 my=-n; ny=0 my=—ny

Let us multiply both sides of this equation by the function ¥ (©,1) and then integrate it

onto the surface of the unit sphere o termwise. Then if we apply the relations (A6) and (A7),
the terms on the left side will not vanish only if n, =n and m; = m. Thus finally we get the

following equation for complex Z,  coefficients:

o0 n o0 ny
20 30 30 Y YA CZED TIPS
i i L\ A7(2n+1) (A12)

n=0 my=-n; ny=0 my=—ny

x C(n,,n,,n;m;, m,, m) A

npmy — mmy

From the properties of the Clebsch-Gordan coefficients (see Appendix B) it is clear that the
C(n,,n,, n,m,, m,, m) coefficients will not vanish only if m = m —m,. The sum with respect

to n, should be extended over the integers

|n—nl|£n2 <n+n
where
n, +n,+n=2k=even .
With these restrictions for indices in the Eq. (A12), it will assume the following form:

47(2n+1) . (A13)

m=0 my=-n ny

x C(n,,ny,n;m,m—m;, m) A

nymy nymy

Real spherical harmonics

When we would like to use real 2D spherical harmonic series with conventional real
spherical harmonics (7), the following relations will hold between real and complex
coefficients:

S+ csmo){_(;;m } - {(—1)"’ zZ. {t}zm} m>0 (Al4)

n

G +
Jer(l+ mzo){_ o }= {(—1)’"2 Ay, {_}A} m 20 (AlS)

nymy

E
87(1+ 5mlo){_ - } _ {(_1)»11 4,, {+} A, } m, >0 (A16)

nymy
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Now let us substitute Z,, and Z, _, from (A13) into the right side of (Al4). If the

summation with respect to m, now runs on positive values only, we get the following

equation
2 D2 1
Br1+35,,) - E E @n DO D 0 00,0,0) x
47(2n+1)
— ) N -
mn 1 C(nl ’ n2’ n; ml >, m— ml’ m) (_1) An2 ,m—niy Bnlml _ Anz,—(m—ml)Bn]Fm] +
3
1+ 5m10 . +
m=0 + C(nl s n2 s 15— ml > m + ml s m) (_1) Anz ,m—niy Bnl,—ml _ Anz,—(m+m1)Bn1m1

Finally we introduce real coefficients instead of the complex coefficients 4 and B from the
Egs. (A15) and (A16) and we get the following real equation pair for C,, and S, ,

{ } ZZ\/(znl £, ) C(ny, ny,n,0,0,0) x
4r(2n +1)
ZJ(H%)(IW 0) "

my=m+l

(=™ C(n,,n,,n;m,m—m,, m)x

[ C H

np,my—m ny,my—m

+(=D)"C(ny, ny, n; —m,, m+m,, m)x

(G, . H
X RY, 1+ 5n11+m 0 {an’ml : }Emm + {_ an e }mel :|

ny ,my+m ny ,my+m

Z 1 9
b (14 8, )1+ 6,,0)

C(n,, n,, n;m;, m—m,, m)x

G H
% /1 N 5’" o |:{an ,m—nmy }Enlml + {an ,m—nmy }Fnlml j| +

ny ,m—my ny ,m—my

(A17)

+(=D)"C(ny, ny, n; —m,, m+m,, m)x

G +m Hn my+m
X Jl + §m1 +m,0 |:{an’ml }Emml + { sz ! }Fnlml :|

ny ,my+m ny ,my+m

Now if the following notations
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0 n
Cnm = E E acc(n’m’anI) Enm + am(n,m,nl,ml) an (A18)
Snm asc (nﬂm’n9m) . ass (nSmanam) o

711:0 m1:0
and
2n, +D(2n, +1)
n,n,,n)= C(n,,n,,n 0,00 Al9
Q(lz)\/ rna G ) (A19)
are introduced, then the a_., a,., a,, a, coefficients will be defined through the following
equations:
_ — Gy s i m, < m}
+ m=my, my—m . +
N ED"TG s M zmf L (AD0a)

a = Z Q(nlanZ’n)
ce 1+8 )A+6
1y \/( ’"0)( mlo) + m (_1)ml an,m+m1

s an,wml , ifm <m .
a. = § \/(1 O(n,,ny,n) m=m:0 ) (1) H, ., ., ifm=z2m ., (A20b)
+
)

o )1+0
o) m10) + m =nHm I‘I,,2 ey

ny ey 3 if m <m

1+6 .
a = § \/(1 O(n,,ny,n) T om0 { (-D"™"H, > ifm = m}+ . (A20c)
)

+5 1+6
mo)( m10) + m (—])ml I‘[,,2 e,

1+6 G”Q,m*’nl ? if m, sm
N +
=m0 (_l)ml_m an Jmy—m > if m 2 m > (Azod)

my+1
+ \ 1 + 5m+m1,0 (_ 1) an,m+m1

_ O(ny,n,,n)
o ” Z\/a +6,0)(1+8,,)

If we perform the index change

i=n, , j=m, , l=n,, k=m,

in the Egs. (A18), (A19) and (A20a-d), the Eq. (55) will be yielded.

The program NORMCP uses formulae (A18-20) for the computation. The cornmutativity
of the product (A10) was tested numerically, and the maximum errors were of order 107"
using 8-byte reals.

Appendix B
The Clebsch-Gordan Coefficients

The definition of the Clebsch-Gordan coefficients (see ROSE, 1957 and WIGNER, 1959) is
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C(ny, ny, nysmy, my, my) =9,

3,Mmy+my

\/(2,13 1) (ny +n, —n) (ny —n, +n) (n, + n, —n)! (+n, —n,)! (ny +my)! (ny, —m;)! _(B1)
(n, +n, +n, + D! (n, —m ) (n, + m)! (n, —m,)! (n, + m,)!

y 2 : (=)t (ny +n, +m, —k)! (n, —m, +k)!

k! (ny —n, +n, =) (ny + my —k)! (k+n, —n, —m;)!
k

where the index & assumes all integer values for which none of the factorials is negative.
The Clebsch-Gordan coefficients are non-vanishing only if the following three
conditions are satisfied.

1.) |m1|Sn1 ,

m2| <n,, m3| <n, ; (n,, n,,n,are non-negative integers)

2.) my is the algebraic sum of m, and m,: m; =m, + m,

3.) n, is the “vectorial sum' of n, and n,; i.e. a triangle can be formed by the vectors of
lengths n,, n,, n,, respectively. This triangle condition, A(n,, n,, n;) is satisfied if

|n1—n2|Sn3 <n +n,.

Properties of the Clebsch-Gordan coefficients

C(ny,ny,n +ny;n,n,,n +n,)=1
C(n,,n,,n +n,;0,0,0)=0, exceptif n,+n,+n, =even (parity coefficient)
C(n,,0,ny;m;,0,my)=0,

.13 my,m3
symmetry relations.

C(np n2a 7’13; m]a m2> m}) = (_1)”1+’12+'73 C(”la n27 7’13; _mla _m2> _m3) =
= (=1 C(n,, ny, ny; m,, m;, my)

Detailed other formulae for the computation of Clebsch-Gordan coefficients for special index
values can be found in the paper of PEC (1983), in Appendix Al.

Appendix C
Practical Computation of Clebsch-Gordan Coefficients

The aim of the following discussion is to present suitable recursion formulae for the
computation of Clebsch-Gordan coefficients instead of the direct formula (B1), which is
well-suited only for the computation of several, but not all coefficients. The recursive method

described here can be easily adapted for computers.

Parity Clebsch-Gordan coefficient
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It is straightforward to derive a recursive computation method for the Q(n,,n,,n)
coefficient, which is in connection with the parity/ClebschGordan coefficient through the
equation (A19).

The following closed expression can be found for the parity ClebschGordan coefficient
(see ROSE, 1957):

)"k 2k =2n)! (2k —2n,)! 2k —2n)!
C(nl,nz,n): ( 1) k ( nl) ( nZ) ( n) , (Cl)
(k—n)! (k—ny)!(k—n)! 2k +1)!
where
k :%(n1 +n, +n)) .
From this expression the following recursion scheme can easily be derived:
1. initial value:
0(0,n,n) = 1 (C2)
b 2 \/E
2. recursion with respect to ,:
2 3 1
O, +1,n +n+1,n)= (2n, +3)(m +n+1) O(n,,n, +n,n) , (C3)
(n, +1)(2n, +2n+1)
3. recursive computation with respect to n, according to the index
1 .
p=5(n1—n2+n)) , p=0,1,2,..., min(n,,n):
Cp+DH(n—p)n,—p)2n+2n -2p+1)2n+2n, —4p-3)
Q(n17p+17n):_ 1 . . Q(nlapan)
(p+D)2n-2p-1)(2n,-2p-1)(n+n, — p)2n+2n, —-4p+1)
(C4)

where the initial value Q(n,,0,n) = Q(n,,n, + n,n) was computed from (C3).

Recursive computation of Clebsch-Gordan coefficients

In the foregoing discussion we used the special values of these coefficients as described in
the paper of PEC (1983) and recursive formulae were as found in M. ROSE (1957).
By the term row we denote all non-vanishing coefficients where the indices n, n,, m, m,

are fixed but n, is variable. The term column refers to all those non-vanishing coefficients
for which n, n,, n,, m are fixed but m, is variable.
Now the general scheme for the computation is briefly the following.
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1.) Compute four initial values to start the computation of two rows at a time
2.) Compute two complete rows at a time to be the initial value for 3).
3.) Compute all the columns for which the coefficients exist.

4.) Repeat 1.) - 3.) for all possible n, m, n, values.
We define the following two different cases for the recursion:

Case A: when m<n,,
Case B: when m2>n,.

1.) Initial value computation

Case A
C(0,n,n;0,0,0)=1
n—m
Cim+L,n+m+l,n;m+1,0,m+1)= | ——— C(m,n+m,n;m+1,0,m+1)
2(2n+2m+3)
m=0,1,...,n-1
Four initial values for two rows for n, #0, n, =m, m+1, ..., etc. are
value 1:

Cn,n +n+1,n;,m,0,m)=

_ \/ (n, +D(2n, +D)(n+n, +1)

(2n+2n, +3)(n, +m, +1)(n, —m+1)

C(n,, n, +n,n;m, 0, m)

with initial values (C6),

value 2:

(n, +m)(n+n, +1)
(n+n)(n —m+1)

C(nl,nl+n,n;m:1,1,m):—\/ C(n,, n, +n,n;m, 0, m)

can be computed from (C7),

value 3:

[(2n+2 1
Cn,n +n—-1,n,m,0,m)=m MC(nl,nl +n, n;m, 0, m)
nn,

can be computed from (C7), and finally
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value 4:

Cn,n +n-1,nm-1,1,m)=

2n+2 1 C10
= [n(m=1)+ n,m (27 +2m +1) C(n,, n, +n,n;m—1,1, m) (€10)
nn(n+n +1)(n+n —1)

can be obtained by the coefficient (C8).
Case B

C0,n,n,0,m,my=1 (C11)
Four initial values for two rows for successive n, values are

value I:

Cny+Ln+n-1Lnn +l,m—n —1,m)=
_\/(n—m+2n1 +D)(n—m+2n, +2)

Cny+Ln +n+l,nn +1,m—n —1,m)
(2n+2n, +2)(2n+2n, +3)
n =0,1,..,m-1 (C12)
then compute from (C12) the following
value 2:
Cn,n +n,nn -1, m—n +1,m)=
2 1 Cl13
=— m(ﬁ(nl,nl+n,n;nl,m—nl,m) ( )
V n—m+2n,
and
value 3:
Cn,n +n-1,n;n,m—n,m)=

_ n(n+m)(2n+2n, +1) Clnon +nmme.m—n,. m) (C14)
n(n—m+2n,) P v

Finally, then from (C13) compute the following for n, >0,

value 4:

Cn,n +n-1,nn —-1l,m-n +1,m)=

2n+2 1
=[n(n1—1)+n1m (2n+2m +1) C(n,,n, +n,n;n —1,m—n, +1, m)
nnmn+m+1)(n—m+2n, —1)

(C15)
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2.) Recursive computation of two complete rows for Case A or B
General formula (see ROSE, 1957)

Cn,n, -l n;m,m—-m;,m)=

2 1
e Bk V(n,)C(n,,n,,nym,m—m,, m)—
1 2n, -1 (C16)

=W(n) 2 3
Ul e Com = m
n, — i

where we'have used the following abbreviations:

n(n,+1)—(n(n+1)+n,(n, +1)
2n,(n, +1)

Viny,)=m, +(m—m,)

and

Wn,) nf—(m—nq)2 n, —n, +n)(n, +n,—n)(n, +n+n, +1)(n, +n—n, +1)
n,)=_|*t -
? 4n?(2n, —1)(2n, +1)

Initial values for recursion with respect to n, are obtained through the expressions (C7 -
C10) or (C12 - C15) to start the computation of two rows at a time.

3.) Compute all the columns

This type of computation requires the following general recursion formulae with respect
to the integer m,:

for increasing m,:

C(n,ny,,nym +1,m—-m, —1,m)=
1 |M(@m)C(n,, ny, n;my, m—m, m)— (Cl17a)
- N(@m,)|—N(@m, =1) C(n,, ny, n;m; =1, m—m, +1, m)

for decreasing m, :

Cn,n,,nym =1, m—m, +1,m)=
_ 1 M(m,) C(n,, ny,n;m;, m—m,, m)— (C17b)
_N(ml_l) —~N(m) C(n;,ny,n;m +1,m—m, -1, m)

where

M(m,)=n(n+1)—n(n +1)-n,(n, +1)=2m,(m—m,)
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and

N(m,) 2\/(711 —m)(n, +m, +)(n, —m+m, +1)(n, +m—m,) .

The initial values for this recursion are those two rows, which were previously
computed from the equation (C16).

The FORTRAN subroutine NORMCP utilizes the above sketched procedure to
compute all the necessary Clebsch-Gordan coefficients. This algorithm was tested
numerically using the direct formula (B1).
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