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Abstract Vertical gravity gradients are measured in 
the field by gravimeters mainly for absolute gravity 
measurements but they are useful for gravity field 
determination as well. Using torsion balance 
measurements, however, it is possible to make a 
relative determination of vertical gravity gradients 
using an idea due to Haalck. Curvature values are 
differentiated and combined first to get horizontal 
variation of the vertical gravity gradient and then 
using a computation process similar to astronomic 
leveling vertical gravity gradient differences are 
yielded. Simulated vertical gradients of torsion 
balance type were compared with actual synthetic 
vertical gradients. A good agreement was found 
between the computed and analytically determined 
vertical gradients. 
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1  Introduction 
 
Torsion balance measurements provide horizontal 
gravity gradients Tzx, Tzy and curvature values 
T∆ = Tyy-Txx, 2Txy, that is certain second derivatives 
of the disturbing potential T. One can find a clever 
concept in Haalck (1950) how to derive a complete 
picture of the local gravity field from these meas-
urements. Following the above idea of Haalck in 
this paper we propose a simple method to determine 
relative changes of the vertical gravity gradient by 
using gravity field information provided for exam-
ple by the Eötvös torsion balance. 

In the first part of the paper we describe the com-
putation procedure how to derive vertical gravity 
gradient variation along a traverse from measured 
gravity gradients and curvature values. In the next 
part a numerical example will be provided by using 
a synthetic gravity field model. Finally, conclusions 
and recommendations will be drawn for the practi-
cal application of the method. 

2 The proposed method 

Let us define the coordinate system by the x, y, and 
z-axis pointing to East, North and Up, respectively. 
Obviously, any other coordinate system can be used 
but it have to be consistent both for the coordinates 
of the points and for the measurements. 

The difference of any torsion balance measure-
ment T ∈ {Txx-Tyy, Txy, Txz, Tyz }can be expressed 
between the point P and points 1 or 2. With the 
notation of Figure 1 

 
Fig. 1 Coordinates of torsion balance measurement sites P, P1 
and P2. 
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In the formula above T denotes an arbitrary kind 
of torsion balance measurement while Tx, Ty, Tz 
denotes unknown derivatives of T with respect to x, 
y and z. Since there are altogether 4 kinds of meas-
urements, therefore theoretically the following 12 
unknowns have to be determined between the 3 
points of Figure 1. from the following 4 × 2 = 8 
measurements  
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The determination of these 12 unknowns is possible 
only because additional 5 constraints can be set up 
between the unknowns due to symmetry reasons 
and also after taking suitable derivatives of the 
Laplace equation 0=++ zzyyxx TTT . These con-
straints are the following: 
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Therefore it follows that for the remaining 7 un-
knowns 8 equations can be set up: 
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This overdetermined linear system of equations can 
be solved for example by minimizing the sum 
square of differences on the left side derived from  
measurement and unknowns. Then the solution 
vector can be used to determine the following three 
derivatives of the vertical gravity gradient Tzz  at P  
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The above three equations again can easily be de-
duced from the Laplace equation by differentiation. 

Extending the above to a traverse with more than 
3 points, at all points the above 3 derivatives of Tzz  
can be determined, except at the endpoints. Finally 
starting with a known Tzz value and summing the 
differences 
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between points (i, i+1), the vertical gravity gradient 
Tzz can be calculated for each point of the traverse. 
At the midpoints the two set of 3 derivatives of Tzz  
can simply be averaged. 

 
 

3 Numerical example 

We can illustrate the above procedure by defining a 
simple 3D density model and computing all the 
necessary parameters of its gravitational field. This 
has the advantage that a self-consistent dataset of all 
the required gravity field parameters can be com-
puted analytically. Moreover, by using such a syn-
thetic model, the approximation errors of the com-
putational procedure can easily be assessed. 

Let us define a simple density source: we place a 
cube of 20 m size with density ρ = 2670 kg/m3 at 
20 m below the zero level (z = 0), i. e. its centre lies 
at the point with coordinates of (0, 0, -30) m. Next  
a traverse of 11 points is defined. The coordinates 
of this traverse line are shown in Table 1. 

Table 1.  Coordinates of the computation points of the trav-
erse. 

Point x [m] y [m] z [m] 
1. -13.995 19.240 1.00 
2. -8.080 13.995 1.50 
3. 0.915 13.415 2.50 
4. 1.250 7.835 0.00 
5. -1.830 3.170 1.00 
6. 7.165 2.590 2.50 
7. 8.750 -5.155 4.00 
8. 13.415 -8.236 5.50 
9. 12.500 -11.651 6.50 

10. 7.255 -17.566 6.00 
11. 14.085 -19.396 4.50 



 

The total length of the traverse is 69.12 m, hence 
the average distance between two points is 6.91 m 
and the maximum height difference is 6.5 m. 

The second derivatives of the gravitational poten-
tial of this body (cf. Table 2) were computed using 
the formulas of a general polyhedral body published 
by Holstein (2003).  

Table 2.  Gravitational gradients computed from the density 
model. All units are Eötvös (1E = 10-9 s-2). 

Point Vxx  
[E] 

Vxy  
[E] 

Vxz  
[E] 

Vyy  
[E] 

Vyz  
[E] 

Vzz  
[E] 

1. -14.86 -12.51 -20.37 -6.74 28.13 21.61
2. -27.08 -8.33 -19.20  -17.53 33.49 44.61
3. -32.21 0.92 2.29 -18.93 33.91 51.15
4. -46.11 1.30 5.22  -38.44 32.98 84.55
5. -44.96 -0.74 -7.61  -44.14 13.19 89.10
6. -32.74 1.75 22.92  -36.84 8.25 69.58
7. -26.03 -3.21 21.90 -29.53 -12.86 55.56
8. -15.80 -5.17 22.76 -21.01 -13.93 36.80
9. -15.58 -5.70 18.16 -16.38 -16.91 31.95

10. -19.06 -4.76 9.88 -9.54  -24.05 28.60
11. -12.83 -8.83 15.86 -7.08 -21.90 19.91

 
Vertical gravity gradients were computed at each 

point with the procedure described in the previous 
section (the value of Vzz calculated at the first point 
was used to initialize the computation). The compu-
tational results and their differences with respect to 
the synthetic vertical gravity gradients (last column 
of Table 2.) are shown below in Table 3. 

Table 3.  Vertical gravity gradients computed from simu-
lated torsion balance measurements and their differences 
with respect to their “true” analytic values at each point of 
the traverse. 

Point Vzz [E] 
(computed) 

∆Vzz [E] 
(computed-

analytic) 
1. -13.99 19.24 
2. -8.08 13.99 
3. 0.92 13.41 
4. 1.25 7.83 
5. -1.83 3.17 
6. 7.16 2.59 
7. 8.75 -5.15 
8. 13.41 -8.24 
9. 12.50 -11.65 

10. 7.25 -17.57 
11. 14.08 -19.40 

 
 The standard deviation of differences is ± 4.68 E, 

which is about 20.5 % of the mean square value 
± 22.79 E  of the vertical gradients themselves. The 
computed and analytical (“true”) values of the ver-
tical gravity gradients are shown in Figure 2, refer-

ring to a common mean value for easier compari-
son. 

 

 
Fig. 2 Vertical gravity gradients Vzz, computed from simu-
lated torsion balance measurements (denoted by □) and from 
the analytical model (denoted by ×). Horizontal axis is the 
line length in meter, vertical axis is Vzz in Eötvös.  

   
If we reduce the length of the line by 50% but 

keep its origin, the standard deviation of differences 
also reduces to ± 1.29 E, which is only 12.9 % of 
the mean square value ± 10.05 E of the vertical 
gradients themselves. 

 

 
Fig. 3 Vertical gravity gradients Vzz, computed from simu-
lated torsion balance measurements (denoted by □) and from 
the analytical model (denoted by ×). Same as Figure 2, but 
the line length is reduced by 50%.  

   
This simple check shows (in agreement with our 

expectations) the substantial reduction of the lin-
earization error of the computation by decreasing 
the distance of torsion balance stations. Of course 
the optimal distance of points also depends on the 
local structure of the gravity field and the cost of 
measurements. 



 

The measurement errors of the torsion balance 
also have a substantial effect on the computed verti-
cal gravity gradients. These errors have been mod-
eled by adding random noise to the density model 
generated gradient and curvature measurements of 
the Eötvös torsion balance. It is evident from  Table 
4. that the standard deviation of computed Vzz val-
ues with respect to their error-free values increases 
more rapidly by increasing the noise level of curva-
ture terms than that of the gradient terms. When the 
height differences of points is greater, however, the 
figures in Table 4 show that the errors of the meas-
ured horizontal gradients have greater impact on the 
error of computed Vzz values. Therefore we con-
clude that the geometry of computation points have 
a strong effect on the error of vertical gravity gradi-
ents. 

Table 4.  Standard deviation of differences of vertical gravity 
gradients due to simulated torsion balance gradient and 
curvature measurement errors. The maximum height differ-
ence of points is also varying. All units are Eötvös (1E = 10-9 
s-2). 

σcurv → 
σgrad ↓ 

∆hmax 
[m]  ± 1 E ± 2 E ± 3 E 

± 1 E ± 5.8 ± 11.5 ± 17.3
± 2 E ± 6.1 ± 11.5 ± 17.3 
± 3 E 

1.3 
± 6.3 ± 11.8 ± 17.9

± 1 E ± 4.7 ± 8.9 ± 13.2
± 2 E ± 6.0 ± 9.8 ± 13.6 
± 3 E 

6.5 
± 7.5 ± 10.6 ± 14.6

± 1 E ± 7.0 ± 9.0 ± 11.9 
± 2 E ± 12.3 ± 13.1 ± 15.4
± 3 E 

32.5 
± 18.2 ± 18.9 ± 20.4

 
 

4 Conclusions and recommendations 

A procedure was presented to compute differences 
of vertical gravity gradients from torsion balance 
measurements. Our checks with a simple synthetic 
gravity field model have shown that the computa-
tion is feasible. The accuracy of the determined 
vertical gravity gradients depends on many factors, 
but the most serious are the measurement and dis-
cretization (linearization) errors. The main driving 
factors are linearization errors, which can be re-
duced by decreasing the distance between torsion 
balance measurement sites, depending on the struc-
ture of the gravity field, and point geometry. The 
larger the height variation of the points, the more 

accurate measurements of horizontal gravity gradi-
ents is needed. On the contrary, if the horizontal 
extent of the computation area is larger than the 
vertical one, it is recommended to increase the 
accuracy of curvature gravity gradients.  

The accuracy of the relative vertical gravity gra-
dient determination from torsion balance measure-
ments, however, is expected to surpass the accuracy 
obtainable by gravimeters, which is about ± 30 E 
for two measurement series with 4 gravimeters 
(Csapó and Völgyesi, 2003).   

The proposed procedure may have practical ap-
plication in the future in those areas where torsion 
balance measurements exist. For example, test 
computations are in preparation on the network 
points of the Budapest microbase. This small net-
work contains 14 torsion balance stations, and each 
station has vertical gradient value measured by LCR 
gravimeters. Sometimes we need a map of the verti-
cal gravity gradients for some reason (for example 
for gravity field/geoid determination). For this pur-
pose other methods of computation (e.g. gradient 
kriging, see Menz and Knospe, 2002) may be more 
feasible to extend the computation over scattered 
data points instead of along a traverse line.  
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