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Abstract. There is a dense network of torsion bal-
ance stations in Hungary, covering an area of about 
40000 2km . These measurements are a very useful 
source to study the short wavelength features of the 
local gravity field, especially below 30 km wave-
length. Our aim is thus to use these existing torsion 
balance data in combination with gravity anomalies. 
Therefore a method was developed, based on 
integration of horizontal gravity gradients over 
finite elements, to predict gravity anomaly 
differences at all points of the torsion balance 
network. Test computations were performed in a 
Hungarian area extending over about 800 2km . 
There were 248 torsion balance stations and 30 
points among them where ∆g values were known 
from measurements in this test area. 
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1 The proposed method 
 
Let’s start from the fundamental equation of physi-
cal geodesy: 
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where T is the potential disturbance and R is the 
mean radius of the Earth (Heiskanen, Moritz 1967). 
Changing of gravity anomaly g∆  between two 
arbitrary points 1P  and 2P  is: 
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In a special coordinate system (x points to North, y 
to East and z to Down) the changing of gravity 
anomaly: 
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Let’s estimate the order of magnitude of term 
))(/2( 12 TTR −  which is: 
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where 12N∆  is the changing of geoid undulation 
between the two points. If the changing of geoid 
undulation between two points is 1 m, than the 
value of (1) is 0.3 mGal (1 mGal = 10–5m/s2). Tak-
ing into account the average distance between the 
torsion balance stations and supposing not more 
than dm order of geoid undulation’s changing, the 
value of (1) can be negligible. 

Applying the notation zTTz ∂∂= /  for the partial 
derivatives, the changing of gravity anomalies be-
tween the two points 1P  and 2P  is: 

( ) 1212 )()( zz TTgg −=∆−∆ . 

So in the case of displacement vector dr the ele-
mentary change of gravity anomaly g∆ will be: 
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Integrating this equation between points 1P  and 2P  
we get the changing of gravity anomaly: 
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where zxzxzx UWT −=  , zyzyzy UWT −=  and 

zzzzzz UWT −=  ; zxW  and zyW  are horizontal gradi-
ents of gravity measured by torsion balance, zzW  is 
the measured vertical gradient, zxU  and zyU  are the 



normal value of horizontal gravity gradients, and 
zzU  is the normal value of vertical gradient. Ac-

cording to Torge (1989): 
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where M and N is the curvature radius in the merid-
ian and in the prime vertical, )sin1( 2 ϕβγγ += e  is 
the normal gravity on the ellipsoid. With the values 
of the Geodetic Reference System 1980, the follow-
ing holds at the surface of the ellipsoid: 

22sin1.8 −= nsU zx ϕ  
23086 −= nsU zz . 

Let’s compute the first integral on the right side 
of equation (2) between the points 1P  and 2P . Be-
fore the integration a relocation to a new coordinate 
system is necessary; the connection between the 
coordinate systems (x,y) and the new one (u,v) can 
be seen on Figure 1. Denote the direction between 
the points 1P  and 2P  with u and be the coordinate 
axis v perpendicular to u. Denote the azimuth of u 
with 12α  and point the z axis to down, perpendicu-
larly to the plane of (xy) and (uv)!  
 

 
Fig. 1 Coordinate transformation (x,y)→(u,v) 
 
The transformation between the two systems is: 
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Using these equations, the first derivatives of any 
function W are: 
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From this first equation, if  zTW =  than  
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If points 1P  and 2P  are close to each other as re-
quired, integrals on the right side of equation (2) 
can be computed by the following trapezoid integral 
approximation formula: 
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where 12s  is the horizontal distance between points 

1P  and 2P , and 12h∆  is the height difference be-
tween these two points. 

The value of integral (4) depends on the vertical 
gradient disturbance zzT  and the height difference 
between the points. If points are at the same height 
(on a flat area) and in case of small vertical gradient 
disturbances the third integral in (2) can be ne-
glected. (E.g. the value of (4) is 0.25 mGal in case 
of mh 5012 =∆  and ETT zzzz 502/])()[( 21 =+ ). 

So, discarding the effect of (4) the differences of 
gravity anomalies between two points can be com-
puted by the approximate equation: 
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2 Practical solutions 
 
If we have a large number of torsion balance meas-
urements, it is possible to form an interpolation net 
(a simple example can be seen in Figure 2) for de-
termining gravity anomalies at each torsion balance 
points (Völgyesi, 1993, 1995, 2001). On the basis 
of Eq. (5) 
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can be written between any adjacent points, where 
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Fig. 2 Interpolation net connecting torsion balance points 

 
For an unambiguous interpolation it is necessary 

to know the real gravity anomaly at a few points of 
the network (triangles in Figure 2). Let us see now, 
how to solve interpolation for an arbitrary network 
with more points than needed for an unambiguous 
solution, where gravity anomalies are known. In 
this case the g∆  values can be determined by ad-
justment.  

The question arises what data are to be consid-
ered as measurement results for adjustment: the real 
torsion balance measurements zxW  and zyW  , or 

ikC  values from Eq. (7). Since no simple functional 
relationship (observation equation) with a meas-
urement result on one side and unknowns on the 
other side of an equation can be written, computa-
tion ought to be made under conditions of adjust-
ment of direct measurements, rather than with 
measured unknowns − this is, however, excessively 
demanding in terms of storage capacity. Hence 
concerning measurements, two approximations will 
be applied: on the one hand, gravity anomalies from 
measurements at the fixed points are left uncor-
rected − thus, they are input to adjustment as con-
straints − on the other hand, ijC  on the left hand 
side of fundamental equation (6) are considered as 
fictitious measurements and corrected. Thereby 
observation equation (6) becomes: 

ikikik ggvC ∆−∆=+  (8) 

permitting computation under conditions given by 
adjusting indirect measurements between unknowns 
(Detrekői, 1991). 

The first approximation is possible since reliabil-
ity of the gravity anomalies determined from meas-
urements exceeds that of the interpolated values 
considerably. Validity of the second approximation 

will be reconsidered in connection with the problem 
of weighting. 

For every triangle side of the interpolation net, 
observation equation (8): 

 ikikik Cggv −∆−∆=  (9) 

may be written. In matrix form: 
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where A is the coefficient matrix of observation 
equations, x  is the vector containing unknowns  

g∆ , l is the vector of constant terms, m is the num-
ber of triangle sides in the interpolation net and n is 
the number of points. The non-zero terms in an 
arbitrary row i of matrix A are: 

[ ]...0110... −+  

while vector elements of constant term l are the  
ikC   values. 
Gravity anomalies fixed at given points modify 

the structure of observation equations. If, for in-
stance, 0kk gg ∆=∆  is given in (8), then the corre-
sponding row of matrix A is: 

[ ]...0100... −  

the changed constant term being: 0kij gC ∆− , that is 

kg∆ , and of coefficients of kg∆  are missing from 
vector x, and matrix A, respectively, while corre-
sponding terms of constant term vector l are 
changed by a value 0kg∆ . 

Adjustment raises also the problem of weighting. 
Fictive measurements may only be applied, how-
ever, if certain conditions are met. The most impor-
tant condition is the deducibility of covariance 
matrix of fictive measurements from the law of 
error propagation, requiring, however, a relation 
yielding fictive measurement results, − in the actual 
case, Eq. (7). Among quantities on the right-hand 
side of (7), torsion balance measurements  zxW   and  

zyW   may be considered as wrong. They are about 

equally reliable E1±  ( 291011 −−== sUnitEötvösE ), 
furthermore, they may be considered as mutually 
independent quantities, thus, their weighting coeffi-
cient matrix WWQ  will be a unit matrix. With the 
knowledge of WWQ , the weighting coefficient ma-
trix CCQ  of fictive measurements ikC  after Detre-
kői (1991) is: 

FFFQFQ ** == WWCC  



EQ =WW  being a unit matrix. Elements of an arbi-

trary row i of matrix *F  are: 
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For the following considerations let us produce 
rows *f1  and *f2  of matrix *F  (referring to sides 
between points 21 PP −  and 31 PP −  respectively): 
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Using *f1 , variance of ikC  value referring to side 

21 PP −  is: 
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while *f1  and *f2  yield covariance of ikC  values for 
sides 21 PP −  and 31 PP − : 
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Thus, fictive measurements may be stated to be 
correlated, and the weighting coefficient matrix 
contains covariance elements at the junction point 
of the two sides. If needed, the weighting matrix 
may be produced by inverting this weighting coeffi-
cient matrix. Practically, however, two approxima-
tions are possible: either fictive measurements ijC  
are considered to be mutually independent, so 
weighting matrix is a diagonal matrix; or fictive 
measurements are weighted in inverted quadratic 
relation to the distance. 

By assuming independent measurements, the sec-
ond approximation results also from inversion, 
since terms in the main diagonal of the weighting 
coefficient matrix are proportional to the square of 
the side lengths. The neglection is, however, justi-

fied, in addition to the simplification of computa-
tion, also by the fact that contradictions are due less 
to measurement errors than to functional errors of 
the computational model (Völgyesi, 1993). 
 
3 Test computations 
 
Test computations were performed in a Hungarian 
area extending over about 800 2km . In the last cen-
tury approximately 60000 torsion balance meas-
urements were made mainly on the flat territories of 
Hungary, at present 22408 torsion balance meas-
urements are available. Location of these 22408 
torsion balance observational points and the site of 
the test area can be seen on Figure 3. 

 
Fig. 3 Location of torsion balance measurements being 
stored in computer database, and the site of the test area  
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Fig. 4 Gravity measurements (marked by dots) and torsion 
balance points (marked by circles) on the test area 
 

The nearly flat test area can be found in the mid-
dle of the country, the height difference between the 
lowest and highest points is less than 20 m. There 
were 248 torsion balance stations and 1197 gravity 
measurements on this area.  30 points from these 



248 torsion balance stations were chosen as fixed 
points where gravity anomalies g∆  are known 
from gravity measurements and the unknown grav-
ity anomalies were interpolated on the remaining 
218 points. Location of torsion balance stations 
(marked by circles) and the gravity measurements 
(marked by dots) can be seen on Figure 4. 

 The isoline map of gravity anomalies 
γ−=∆ gg  ( γ  is the normal gravity) constructed 

from 1197 g measurements can be seen on Figure 5. 
Small dots indicate the locations of measured grav-
ity values. Measurements were made by Worden 
gravimeters, by accuracy of ±20-30 µGal. At the 
same time the isoline map of gravity anomalies 
constructed from the interpolated values from 248 
torsion balance measurements can be seen on Fig-
ure 6. Small circles indicate the locations of torsion 
balance points. 
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Fig. 5 Gravity anomalies from g measurements on the test 
area 
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Fig. 6 Interpolated gravity anomalies from zxW  and zyW  
gradients measured by torsion balance on the test area 

More or less a good agreement can be seen be-
tween these two isoline maps. In order to control 

the applicability and accuracy of interpolation, we 
compared the given and the interpolated gravity 
anomalies. g∆ values were determined for each 
torsion balance points from gravity measurements 
by linear interpolation on the one hand and gravity 
anomalies for the same points from gravity gradi-
ents measured by torsion balance on the other hand. 
Isoline and surface maps of differences between the 
two types of g∆ values can be seen on Figures 7 
and 8. The differences are about ±1−2 mGal the 
maximum difference is 4 mGal. 
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Fig. 7 Isoline map of differences between the measured and 
the interpolated gravity anomalies on the test area 
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Fig. 8 Surface map of differences between the measured and 
the interpolated gravity anomalies on the test area 

 
Finally the standard error characteristic to inter-

polation, determined by 

∑
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was computed (where .mes
ig∆  is the gravity anomaly 

from gravity measurements, .int
ig∆  is the interpo-

lated value from torsion balance measurements and 
248=n  is the number of torsion balance stations). 



Standard error mGal281.1±=∆gm  indicates that 
horizontal gradients of gravity give a possibility to 
determine gravity anomalies from torsion balance 
measurements by mGal accuracy on flat areas. 

In case of a not quite flat area (like our test area) 
accuracy of interpolation would probably be in-
creased by taking into consideration the effect of 
vertical gradients by integral (4), but unfortunately 
we haven’t got the real vertical gradient values of 
torsion balance points on our test area yet. It would 
be important to investigate the effect of vertical 
gradient for the interpolation in the future. 
 
Summary 
 
A method was developed, based on integration of 
horizontal gradients of gravity zxW  and zyW , to 
predict gravity anomalies at all points of the torsion 
balance network. Test computations were per-
formed in a characteristic flat area in Hungary 
where both torsion balance and gravimetric meas-
urements are available. Comparison of the meas-
ured and the interpolated gravity anomalies indi-
cates that horizontal gradients of gravity give a 
possibility to determine gravity anomalies from 
torsion balance measurements by mGal accuracy on 
flat areas. Accuracy of interpolation would probably 

be increased by taking into consideration the effect 
of vertical gradients. 
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