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Abstract. There is a dense network of torsion bal-
ance stations in Hungary, covering an area of about

40000 km” . These measurements are a very useful
source to study the short wavelength features of the
local gravity field, especially below 30 km wave-
length. Our aim is thus to use these existing torsion
balance data in combination with gravity anomalies.
Therefore a method was developed, based on
integration of horizontal gravity gradients over
finite elements, to predict gravity anomaly
differences at all points of the torsion balance
network. Test computations were performed in a

Hungarian area extending over about 800 km”.
There were 248 torsion balance stations and 30

points among them where Ag values were known
from measurements in this test area.
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1 The proposed method

Let’s start from the fundamental equation of physi-
cal geodesy:
or 2T
A = — =,
S or R
where T is the potential disturbance and R is the
mean radius of the Earth (Heiskanen, Moritz 1967).
Changing of gravity anomaly Ag between two

arbitrary points £, and P, is:

(e -20)=|(Z) (L) |-,

In a special coordinate system (x points to North, y
to East and z to Down) the changing of gravity
anomaly:

(Ag, —Agl){(z—gz —(Z—:M—%(Tz 7).

Let’s estimate the order of magnitude of term
(2/R)(T, —T,) which is:
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where AN,, is the changing of geoid undulation

between the two points. If the changing of geoid
undulation between two points is 1 m, than the
value of (1) is 0.3 mGal (1 mGal = 10 °m/s?). Tak-
ing into account the average distance between the
torsion balance stations and supposing not more
than dm order of geoid undulation’s changing, the
value of (1) can be negligible.

Applying the notation 7, =0T /0z for the partial

derivatives, the changing of gravity anomalies be-
tween the two points P, and P, is:

(Ag, —Ag))=(T), —(T.), .

So in the case of displacement vector dr the ele-
mentary change of gravity anomaly Ag will be:

dhg = V(Ag)-dr = 208 gy 98 4, OO 4 _
ox oy Oz .
T dx+T,dy+T,dz

Integrating this equation between points P and P,
we get the changing of gravity anomaly:

(Ag, —Ag,)= j.dAg = szxdx +j T, dy+ szdz , (2)
1 1 1 1

where T, =W, -U, , T,=W,-U, and
T.,=W_,-U,_ ; W, and W, are horizontal gradi-
ents of gravity measured by torsion balance, W is

the measured vertical gradient, U_. and U, are the



normal value of horizontal gravity gradients, and
U_, is the normal value of vertical gradient. Ac-

zz

cording to Torge (1989):

where M and N is the curvature radius in the merid-
ian and in the prime vertical, y = y,(1+ Bsin’ ) is
the normal gravity on the ellipsoid. With the values

of the Geodetic Reference System 1980, the follow-
ing holds at the surface of the ellipsoid:

U, =8.1sin2¢ns™
U_. =3086ns".

Let’s compute the first integral on the right side
of equation (2) between the points A and P,. Be-
fore the integration a relocation to a new coordinate
system is necessary; the connection between the
coordinate systems (x,y) and the new one (u,v) can
be seen on Figure 1. Denote the direction between
the points P, and P, with u and be the coordinate

axis v perpendicular to u. Denote the azimuth of u
with ¢, and point the z axis to down, perpendicu-

larly to the plane of (xy) and (uv)!

Fig. 1 Coordinate transformation (x,y)—(u,v)

The transformation between the two systems is:

xX=ucosa,, —vsina,, }

y=usina,, +vcosa,,

Using these equations, the first derivatives of any
function W are:
6W_6W@+6_W8_y_6W
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From this first equation, if W =T, than

T, du= (Tr cosay, +71,sina,, )du =T,dx+T,dy,

dx cosa,,
=| . du
dy sing,,

If points P, and P, are close to each other as re-

because

quired, integrals on the right side of equation (2)
can be computed by the following trapezoid integral
approximation formula:

S12

[(rdrs Tydy)= [Tau~22{(r.), +(2.).] ®
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where s,, is the horizontal distance between points
P and P,, and Ak, is the height difference be-

tween these two points.
The value of integral (4) depends on the vertical
gradient disturbance 7, and the height difference

between the points. If points are at the same height
(on a flat area) and in case of small vertical gradient
disturbances the third integral in (2) can be ne-
glected. (E.g. the value of (4) is 0.25 mGal in case
of Ah, =50m and [(T,), +(7.,),]/2=50E").

So, discarding the effect of (4) the differences of
gravity anomalies between two points can be com-
puted by the approximate equation:

S12

(Ag, —Ag) =~ 7{ [(T.), +(T.,),] cos

+[(T,), +(T,,),]sina,, }
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2 Practical solutions

If we have a large number of torsion balance meas-
urements, it is possible to form an interpolation net
(a simple example can be seen in Figure 2) for de-
termining gravity anomalies at each torsion balance
points (Volgyesi, 1993, 1995, 2001). On the basis
of Eq. (5)

(Agk - Ag,') =Cy (6)



can be written between any adjacent points, where

{ (sz _sz)i + (sz _sz)k
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Fig. 2 Interpolation net connecting torsion balance points

For an unambiguous interpolation it is necessary
to know the real gravity anomaly at a few points of
the network (triangles in Figure 2). Let us see now,
how to solve interpolation for an arbitrary network
with more points than needed for an unambiguous
solution, where gravity anomalies are known. In
this case the Ag values can be determined by ad-

justment.

The question arises what data are to be consid-
ered as measurement results for adjustment: the real
torsion balance measurements W, and W, , or

C, values from Eq. (7). Since no simple functional

relationship (observation equation) with a meas-
urement result on one side and unknowns on the
other side of an equation can be written, computa-
tion ought to be made under conditions of adjust-
ment of direct measurements, rather than with
measured unknowns — this is, however, excessively
demanding in terms of storage capacity. Hence
concerning measurements, two approximations will
be applied: on the one hand, gravity anomalies from
measurements at the fixed points are left uncor-
rected — thus, they are input to adjustment as con-
straints — on the other hand, C, on the left hand

side of fundamental equation (6) are considered as
fictitious measurements and corrected. Thereby
observation equation (6) becomes:

Cy +vy =Ag, —Ag; )]

permitting computation under conditions given by
adjusting indirect measurements between unknowns
(Detrekoi, 1991).

The first approximation is possible since reliabil-
ity of the gravity anomalies determined from meas-
urements exceeds that of the interpolated values
considerably. Validity of the second approximation

will be reconsidered in connection with the problem
of weighting.

For every triangle side of the interpolation net,
observation equation (8):

Vi =Ag, —Ag; —Cy ©
may be written. In matrix form:

v=A x+1

(m,1) (m,2n) (2n,1) (m.1)
where A is the coefficient matrix of observation
equations, x is the vector containing unknowns
Ag , 1is the vector of constant terms, m is the num-
ber of triangle sides in the interpolation net and # is
the number of points. The non-zero terms in an
arbitrary row i of matrix A are:

[. 0 +1 -1 0 .]

while vector elements of constant term 1 are the
C, values.

Gravity anomalies fixed at given points modify
the structure of observation equations. If, for in-
stance, Ag, =Ag,, is given in (8), then the corre-
sponding row of matrix A is:

[. 00 -1 0 .]

the changed constant term being: C;, —Ag,,, that is

Ag, , and of coefficients of Ag, are missing from
vector x, and matrix A, respectively, while corre-
sponding terms of constant term vector 1 are
changed by a value Ag,, .

Adjustment raises also the problem of weighting.
Fictive measurements may only be applied, how-
ever, if certain conditions are met. The most impor-
tant condition is the deducibility of covariance
matrix of fictive measurements from the law of
error propagation, requiring, however, a relation
yielding fictive measurement results, — in the actual
case, Eq. (7). Among quantities on the right-hand
side of (7), torsion balance measurements #W_ and

zx

W, may be considered as wrong. They are about

equally reliable +1E (1E =1E6tvés Unit =107°s72),

furthermore, they may be considered as mutually
independent quantities, thus, their weighting coeffi-
cient matrix Qy, will be a unit matrix. With the

knowledge of Q,, , the weighting coefficient ma-

trix Q. of fictive measurements C, after Detre-
kéi (1991) is:

Q.=FQ,,F=FF



Qv =E being a unit matrix. Elements of an arbi-

. . *
trary row i of matrix F~ are:

acik 6Cik acik

ow,, ) \ow,), 77 \ow, )
6Cik aCik 6Cik
ow, ) \ew, ) ~7 \ow,

n

For the following considerations let us produce
rows f, and f, of matrix F~ (referring to sides
between points P, — P, and A — P, respectively):

. spsine;, S, sina,
f; = , ,0,0,...,0,
2 2
S1p €08, 5,C08a, O]
2 b 2 EEAAE
2 2
and
. S5 Sine S5 Sing
13 13 13 13
f; =] , 0, ,0,0,...,0,
2
S5 COSQ S5 COSQ
13 13 13 13
, 0, ,0,0,...,0 ]
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Using f,", variance of C, value referring to side
PP is:
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while f and f, yield covariance of C, values for
sides L —P, and P, —P;:

S12513

cov = (sin o, sinay; +cosay, Cos )

Thus, fictive measurements may be stated to be
correlated, and the weighting coefficient matrix
contains covariance elements at the junction point
of the two sides. If needed, the weighting matrix
may be produced by inverting this weighting coeffi-
cient matrix. Practically, however, two approxima-
tions are possible: either fictive measurements C;

are considered to be mutually independent, so
weighting matrix is a diagonal matrix; or fictive
measurements are weighted in inverted quadratic
relation to the distance.

By assuming independent measurements, the sec-
ond approximation results also from inversion,
since terms in the main diagonal of the weighting
coefficient matrix are proportional to the square of
the side lengths. The neglection is, however, justi-

fied, in addition to the simplification of computa-
tion, also by the fact that contradictions are due less
to measurement errors than to functional errors of
the computational model (Volgyesi, 1993).

3 Test computations

Test computations were performed in a Hungarian

area extending over about 800 km” . In the last cen-
tury approximately 60000 torsion balance meas-
urements were made mainly on the flat territories of
Hungary, at present 22408 torsion balance meas-
urements are available. Location of these 22408
torsion balance observational points and the site of
the test area can be seen on Figure 3.
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Fig. 3 Location of torsion balance measurements being
stored in computer database, and the site of the test area
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Fig. 4 Gravity measurements (marked by dots) and torsion
balance points (marked by circles) on the test area

The nearly flat test area can be found in the mid-
dle of the country, the height difference between the
lowest and highest points is less than 20 m. There
were 248 torsion balance stations and 1197 gravity
measurements on this area. 30 points from these



248 torsion balance stations were chosen as fixed
points where gravity anomalies Ag are known

from gravity measurements and the unknown grav-
ity anomalies were interpolated on the remaining
218 points. Location of torsion balance stations
(marked by circles) and the gravity measurements
(marked by dots) can be seen on Figure 4.

The isoline map of gravity anomalies
Ag=g—-y (y is the normal gravity) constructed

from 1197 g measurements can be seen on Figure 5.
Small dots indicate the locations of measured grav-
ity values. Measurements were made by Worden
gravimeters, by accuracy of £20-30 uGal. At the
same time the isoline map of gravity anomalies
constructed from the interpolated values from 248
torsion balance measurements can be seen on Fig-
ure 6. Small circles indicate the locations of torsion
balance points.
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Fig. 5 Gravity anomalies from g measurements on the test
area
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Fig. 6 Interpolated gravity anomalies from W, and W,

z

gradients measured by torsion balance on the test area

More or less a good agreement can be seen be-
tween these two isoline maps. In order to control

the applicability and accuracy of interpolation, we
compared the given and the interpolated gravity
anomalies. Ag values were determined for each

torsion balance points from gravity measurements
by linear interpolation on the one hand and gravity
anomalies for the same points from gravity gradi-
ents measured by torsion balance on the other hand.
Isoline and surface maps of differences between the
two types of Ag values can be seen on Figures 7

and 8. The differences are about +1-2 mGal the
maximum difference is 4 mGal.
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Fig. 7 Isoline map of differences between the measured and
the interpolated gravity anomalies on the test area
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Fig. 8 Surface map of differences between the measured and
the interpolated gravity anomalies on the test area

Finally the standard error characteristic to inter-
polation, determined by

1 C mes ini
Mg =% ;z(Agi h _Agi t')2 5
i=1

mes.
i

was computed (where Ag™" is the gravity anomaly

from gravity measurements, Ag"™ is the interpo-

lated value from torsion balance measurements and
n =248 is the number of torsion balance stations).



Standard error m,, =+1.281 mGal indicates that

horizontal gradients of gravity give a possibility to
determine gravity anomalies from torsion balance
measurements by mGal accuracy on flat areas.

In case of a not quite flat area (like our test area)
accuracy of interpolation would probably be in-
creased by taking into consideration the effect of
vertical gradients by integral (4), but unfortunately
we haven’t got the real vertical gradient values of
torsion balance points on our test area yet. It would
be important to investigate the effect of vertical
gradient for the interpolation in the future.

Summary

A method was developed, based on integration of
horizontal gradients of gravity W, and W_, to

zy?
predict gravity anomalies at all points of the torsion
balance network. Test computations were per-
formed in a characteristic flat area in Hungary
where both torsion balance and gravimetric meas-
urements are available. Comparison of the meas-
ured and the interpolated gravity anomalies indi-
cates that horizontal gradients of gravity give a
possibility to determine gravity anomalies from
torsion balance measurements by mGal accuracy on

flat areas. Accuracy of interpolation would probably

be increased by taking into consideration the effect
of vertical gradients.
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