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Abstract 
 

The Pareto optimality method is applied to the parameter estimation of the Gauss-
Helmert weighted 2D similarity transformation assuming that there are measurement 
errors and/or modeling inconsistencies. 

In some cases of parametric modeling, the residuals to be minimized can be expressed 
in different forms resulting in different parameter values for the estimated parameters. 
Sometimes these objectives may compete in the Pareto sense, namely a small change 
in the parameters can result in an increase in one of the objectives on the one hand, 
and a decrease of the other objective in the other hand. In this study, Pareto optimality 
approach was employed to find the optimal trade-off solution between the conflicting 
objectives and the results compared to those from ordinary least squares (OLS), total 
least squares (TLS) techniques and the least geometric mean deviation (LGMD) 
approach.  

The results indicate that Pareto optimality can be considered as their generalization 
since the Pareto optimal solution produces a set of optimal parameters represented by 
the Pareto-set containing the solutions of these techniques (error models). From the 
Pareto-set, a single optimal solution can be selected on the basis of the decision 
maker's criteria. The application of Pareto optimality needs nonlinear multi-objective 
optimization, which can be easily achieved in parallel via hybrid genetic algorithms 
built-in engineering software systems such as Matlab. A real-word problem is 
investigated to illustrate the effectiveness of this approach. 
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1.  Introduction 
 



Parameter estimation of coordinate transformations is a central problem in geodesy, 
and requires the handling of overdetermined systems of nonlinear equations 
containing more equations (n) than unknown parameters (m) 
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which includes a parameter vector p of dimension m, as unknown, and observation 
vectors x and y. In this model, the underlying assumption is that the observation 
vector x is error-free, and only y has measurement errors ey. This traditional error 
model can be solved in the least squares sense by using the ordinary least squares 
method (OLS). 

However, this model is often invalid as many physical systems encounter errors in 
both the observation vectors, arising from, e.g., imprecise measuring instruments, 
human errors, etc. In such cases, the deviation between the model and the measured 
variables can be expressed by the compensation in the input variables, too 
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This model representing errors in both input as well as in output variables is called 
errors-in-all-variables (EIV) model whose parameter estimation problem leads to a 
minimization 
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under the constraint of Eq. (2), where 
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the model (g) is linear, since now the errors (e) are also unknowns besides the 
parameters (p). 

One of the frequently employed techniques to solve this parameter estimation problem 
is the so called total least squares method (TLS), see e.g. Golub and Van Loan (1980). 
Since this technique is basically designed for linear cases, one needs to linearize the 
original problem. For the linear Gauss-Helmert (GH) transformation, the EIV 
problem has been solved e.g., by Felus and Schaffrin (2005) employing the TLS 
technique. For weighted coordinates, namely 
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Neitzel (2010) discussed the solution suggesting an iteratively linearized  TLS (IL -
TLS) method.  

The EIV model assumes that there are no modeling inconsistencies, namely the 
),( pxgy =  model would be adequate, error-free if there were no measurement errors. 

This assumption is represented by Eq. (2).  

In order to avoid this supposition and taking into account possible modeling errors, 
Tofallis (2002) and (2003) introduced a different approach to solve the EIV problem. 
He considered a simple line fitting, assuming that 1, Ryx ∈  and 2Rp ∈ . Then Eq (1) 
becomes 

 nippxey iiyi ,...,2,1,21 =+=− . (5) 



Now the deviation between the measurements and the model can be expressed by the 
compensation of the input too, namely 

 nippexey ixiiyi ,...,2,1,)( 21 =+−=− . (6) 

He then proposed to minimize the sum of the squares of the geometric means of the 
errors, 
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This technique is referred as least geometric mean deviation (LGMD) method.  

To find another solution technique for the EIV problem of the GH model, let us 
express the squares of the errors considering Eqs (5) and (6) as, 
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T
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and 
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T
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Realizing that these functions are competing such that one increases at the expense of 
the other, Pareto optimality can be employed as an alternative method. 

In this study, an extension of this approach for the GH model with weighted 
coordinates will be illustrated and the results compared to those of the IL-TLS, as well 
as, to those of the LGMD method. 

The study is organized as follows: Section 2 provides a brief outline of the Pareto 
optimality approach while Section 3 considers, the parameter estimation problem of 
the 2D similarity transformation (GH) as a multiobjective minimization problem. In 
Section 4, a numerical example illustrates the suggested approach. Section 5 compares 
the different parameter estimation techniques and Section 6 concludes the features of 
the Pareto optimality solution by contributing to the solution of a real-world 2D datum 
transformation problem of Hungarian geodetic stations covering an area of 70×70 km. 
 
2.  Pareto optimality 
 
In many real-life situations, there are multi-objective optimality problems, which 
means that there is more than one objective to be minimized or maximized. In cases 
where all of the objective functions increase or decrease, there exists no optimum. 
However, in regions where these objective functions are competing or conflicting 
with each other, meaning that a small change in the independent variables will result 
in an increase of one objective function, an optimum can exist. We call such regions 
feasible regions for optimal solutions. 

A solution in such region is said to be a Pareto optimal solution if it is not dominated 
by any other solution in that region. Pareto optimality is defined as follows, see e.g. 
Marler and Arora (2004): 

Definition: A point, Xx ∈∗ , is Pareto optimal if there exists no other point, Xx ∈ , 
such that )()( ∗≤ xfxf  and )()( ∗< xfxf ii  for at least one function. 



From the above definition, the Pareto optimal solution is therefore a set of solutions, 
rather than a single one. The independent variables representing these solutions in the 
variable space form a Pareto-set, and the corresponding values of the objective 
functions are labeled as the Pareto-front. In our case the objective functions are 
convex therefore the Pareto front is also convex and connected. 

The selection of a single optimum from the Pareto set needs a trade-off strategy to be 
implemented by the user (decision maker). A possible selection can be a point of the 
Pareto-front which is closest to the ideal point represented by (fi = 0) for all i. 
 
3.  The multi-objective problem 
 
Let us consider the Gauss-Helmert model of a weighted 2D similarity transformation 
problem, 
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where α is the rotation angle, β is the scale factor and γ, δ are the coordinates of the 
translation. Considering X, Y and x, y as Cartesian coordinates of the transformed and 
original systems, respectively, the problem is now concerned with determining the 4 
unknown parameters (α, β, γ, δ) from the corresponding measured data pairs {(Xi, Yi), 
(xi,yi)} having the weights {(WXi, WYi) and (wxi, wyi)}. It has been assumed that xi and 
yi are considered as independent. The following multi-objective problems can be 
based on the sum of squares of the local residuals: 
 

a) In case of the transformation ),(),( YXyx →  given by 
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b) The inverse transformation ),(),( yxYX →  is given by 
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and a similar objective, 
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The multiobjective problem is to find the minimum of the competing objectives f1 and 
f2 in the design space − in our case 4),,,( R∈δγβα  − in the sense of Pareto 
optimality. 

To solve the multiobjective optimization problem, the multiobjective genetic 
algorithm (GA) implemented as a built-in function in Matlab as (gamultiobj) is 
applied.  

In order to improve the efficiency of the procedure a hybrid scheme is used to find an 
optimal Pareto front for our multiobjective problem. The function gamultiobj can 
reach the region near an optimal Pareto front relatively quickly, but it can take many 
function evaluations to achieve convergence. A commonly used technique is to run 
gamultiobj for a small number of generations to get near an optimum front. Then the 
solution from gamultiobj is used as an initial point for another optimization solver that 
is faster and more efficient for a local search. Here fgoalattain is employed as the 
hybrid solver with gamultiobj. 

One of the main advantages of this genetic hybrid algorithm is the parallelization, − 
the parallel evaluation of the genetic algorithm − especially in our days, when 
multicore processors are easily available. 
 
4. Numerical Example 
 
For the numerical computation the data from Akyilmaz (2007) is employed. 
Corresponding coordinates of the two systems can be seen in Table I and the weights 
are given in Table II. Fig. 1 shows the Pareto-front of our multiobjective minimization 
problem. 

To ensure reliable results the following parameters were used in the gamultiobj 
function, error limit TolFun = 10-12, limit for the number of generations StallGenLimit 
= 1000 and the number of the individuals of the population PopulationSize = 300. The 
computed Pareto-front consisted of 127 points. A single optimum can be selected by 
considering 
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where f1 and f2 are the coordinates of a point of the Pareto-front. Practically, this 
optimal point is the closest point of the Pareto-front to the ideal point (0,0) in the 
sense of the L1 norm. The corresponding point of the Pareto-set ),,,( δγβα  can be 
considered as the selected Pareto solution. The selected optimum point of the Pareto-
front as the minimum of f1+f2 can be seen on Fig. 2. 

The parameters belonging to the selected point of the Pareto-front and the coordinates 
of the corresponding point of the Pareto-set are presented in Table III. 
 
5. Comparing Pareto optimality to other approaches 
 
Let us compare our results to those of the other approaches into the solution of the 
EIV problems. 
 
5.1 Ordinary least squares solutions 
 



a) In case of the transformation ),(),( YXyx →  minimizing Eq. (11), we get the 
parameters, displayed in Table IV. 

b) The inverse transformation ),(),( yxYX →  minimizing Eq. (14), leads to the 
parameters, shown in Table V. 
 
5.2 Total least squares solution 
 
The TLS approach leads to a constrained minimization problem. The objective 
function is the sum of the weighted squares of the adjusted values of the measured 
variables, 

 
====

+++=
n

i
ii

n

i
ii

n

i
ii

n

i
ii ywyxwxYWYXWXF

1

2

1

2

1

2

1

2 ΔΔΔΔ , (17) 

under the constraints of the model equations, 
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where 

( ) γααβγβα ++−+−+= )Δ)(sin()Δ)(cos(Δ)Δ,Δ,Δ,,,(1 iiiiiiiiii yyxxXXyxXg , (20) 

( ) δααβδβα ++++−+= )Δ)(cos()Δ)(sin(Δ)Δ,Δ,Δ,,,(2 iiiiiiiiii yyxxYYyxYg . (21) 

Here iii xYX Δ,Δ,Δ  and iyΔ , the adjusted values of the output as well as the input 

variables are also unknowns besides the four model parameters ),,,( δγβα . 

Neitzel (2010) has solved this problem by employing the iteratively linearized least 
squares technique. The result can be seen in Table VI. 

Since the model is linear, iXΔ  and iYΔ  can be expressed from Eqs (20) and (21) and 

can be substituted into Eq. (17). In this way the constrained optimization problem can 
be transformed into an unconstrained one and the number of unknowns can be 
reduced from 4n+4 down to 2n+4. 
 
5.3 Least geometric mean deviation approach 
 
Employing the LGMD technique suggested by Tofallis (2002) for a single variable 
problem, one needs to consider 
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which corresponds to Eq (7), see Eqs. (12) and (15). The results of this minimization 
can be found in Table VII. The resulted values of the parameters are very close to the 
values given by the IL - TLS as well as Paretro optimum method. 
 
5.4 Comparison 
 
The results of these techniques are compared to the Pareto optimality solution in Fig. 
3. According to our illustrative example, the LGMD solution is Pareto optimal, while 



the IL-TLS approach is very near to the Pareto front, therefore practically the Pareto-
set can represent all of these solutions. Consequently the Pareto optimality solution 
can be considered as a generalization of these solutions, see Fig. (3). 

The selected Pareto solution is the point of the Pareto-front whose distance from the 
ideal point (0,0) is minimum. The Pareto solution and the LGMD solution have 
practically the same value. The difference of the residuals representing the measure of 
the symmetry of the errors in the two different coordinate systems is also minimal in 
the case of the selected Pareto solution, see the third row in Table VIII. 

Consequently, the selected Pareto solution can be considered as a single Pareto 
optimal solution, which has a mostly balanced minimum sum of squares of residuals. 
However, the user (decision maker) can independently define his/her specified trade-
off between the errors of the direct and inverse transformations by selecting another 
point on the Pareto-front. 
 
6.  A real-word problem 
 
Let us consider the Budapest stereographic and the EOV coordinates (Unified 
National Projection System in Hungary (Völgyesi et al, 1996)) of 13 geodetic stations 
covering an area of 70 × 70 km around Budapest, in Hungary. The coordinates of the 
same physical points are given in the systems (x,y) and (X,Y). 

In this case no weights were applied. The different approaches were employed to 
estimate the parameters of the Gauss-Helmert transformation model. The 
minimization of the total residual was carried out with the genetic algorithm as global 
optimization method. The Pareto solution has been computed via a hybrid genetic 
multiobjective solver. The results can be seen in Table IX.  

These results indicate very small deviations in the parameters estimated by the 
different methods although the Pareto solution produced the minimal total residual. 
The small differences of the residuals of the two coordinate systems f1 − f2 shows that 
their errors are well balanced. Figs. (4) and (5) illustrate the distribution of the local 
error (norm of the local error vector) computed by the Pareto method in the system 
(X,Y) and (x,y), respectively. 

These two figures are nearly identical indicating that the distribution of the local 
errors is also well balanced between the two systems. The relatively large local errors 
of all of the methods indicate that the Gauss-Helmert model is not properly suitable 
for the present geodetic transformation problem. However, this example shows that 
neither of the considered technique is able to cure the problem of the GH 
transformation in case of large distortions. To reduce the local errors considerably, a 
nonlinear transformation should be employed, see Völgyesi et al. (1996). 

Fig. 6 illustrates the adjusted vectors of the TLS solution. The arrows-vectors 
represent the corrections (adjustments) of the measured coordinates. This figure 
shows that the local error of the Pareto approach and the adjustments of the TLS 
model are in good harmony, since where the local error of the selected Pareto solution 
is large, there the TLS solution provides large adjusted values. 

In this sense, the Pareto approach − as a generalization of the error models discussed 
here − can be a good candidate for the parameter estimation of geodetic datum 
transformations. 
 



7.  Conclusions 
 
According to the results there is no significant difference between the selected Pareto 
solution and the extended LGMD method, although the latter requires less 
computation power than the Pareto solution. We should stress that none of these 
methods strictly satisfies the model equations, therefore they are able to take modeling 
inconsistencies into account to a certain extent. If the model is proved to be perfectly 
adequate then the TLS solution taking only measurement errors into account is more 
reasonable, since it satisfies the model equations and provides the necessary 
adjustments of the coordinates in both systems. However, the in case of real world 
problems, to use the TLS method requires global minimization with 4n+m variables. 
In our case, the number of the variables was 4×13+4=56, which could be reduced by 
utilizing the linearity of the transformation down to 2×13+4=30. 
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Table I. Corresponding coordinates of the two systems 

 
X [m] Y[m] x [m] y[m] 

4540134.278 382379.896 4540124.094 382385.998 
4539937.389 382629.787 4539927.225 382635.869 
4539979.739 381951.478 4539969.567 381957.570 
4540326.461  381895.009 4540316.294 381901.093 
4539216.387  382184.435 4539206.211 382190.528 

 
 



 
Table II. Weights of the measured coordinates of the two systems 

 
WX WY wx wy 

10.0000 14.2857 5.8824 12.5000 
0.8929 1.4286 0.9009 1.7241 
7.1429 10.0000 7.6923 16.6667 
2.2222 3.2259 4.1667 6.6667 
7.6923 11.1111 8.3333 16.6667 

 
 



 
Table III. Results of the Pareto optimality computation 

 
 Selected Pareto optimum 

α [rad] -0.0000039722 
β 0.9999951685 

γ [m] 30.593 
δ [m] 13.786 
f1 [m

2] 0.002200 
f2 [m

2] 0.002332 
 
 



 
Table IV. Results of the Ordinary Least Squares solution in case ),(),( YXyx →  

 
 OLS  ),(),( YXyx →  

α [rad] -0.0000058613 
β 0.9999970178 

γ [m] 21.475 
δ [m] 21.654 
f1 [m

2] 0.002113 
f2 [m

2] 0.002610 
 



 
Table V. Results of the Ordinary Least Squares solution in case ),(),( yxYX →  

 
 OLS  ),(),( yxYX →  

α [rad] -0.0000024465 
β 0.9999937289 

γ [m] 37.709 
δ [m] 7.410 
f1 [m

2] 0.002419 
f2 [m

2] 0.002256 
 



 
Table VI. Iteratively Linearized Total Least Squares solution, Neitzel (2010) 

 
 IL - TLS 

α [rad] -0.0000042050 
β 0.9999953579 

γ [m] 29.643 
δ [m] 14.769 
f1 [m

2] 0.002174 
f2 [m

2] 0.002401 
 



 
Table VII. Results of the Least Geometric Mean Deviation approach 

 
 LGMD 

α [rad] -0.0000041015 
β 0.9999952510 

γ [m] 30.168 
δ [m] 14.341 
f1 [m

2] 0.002193 
f2 [m

2] 0.002340 
 



 
Table VIII. Norm and the difference of the objective functions 

 
 

 
 

 
21 ff + ×103 21 ff − ×104 

OLS ),(),( YXyx →  3.3581 4.97 
OLS ),(),( yxYX →  3.3077 1.63 
IL-TLS 3.2390 2.27 
LGMD 3.2070 1.47 
Selected Pareto optimum 3.2060 1.32 



 
Table IX. Resulting parameters of the Pareto solution 

 
α [rad] 0.000063492 

β 0.999931677 
γ [m] 649999.949 
δ [m] 238104.852 
f1 [m

2] 3.2329 
f2 [m

2] 3.2333 

21 ff + [m] 4.5723 

21 ff −  [m2] 0.0004 

 
 



 
Figure Captions 
 
Fig. 1:. The Pareto-front 
 
Fig. 2: The selected optimum point of the Pareto-front as the minimum of f1+f2  
 
Fig. 3: Results of the different approaches: TLS(▲), LGMD (■) and the selected 

Pareto (●) solution 
 
Fig. 4: Contour plot of the local error in the X-Y system in case of the Pareto solution. 
 
Fig. 5: Contour plot of the local error in the x-y system in case of the Pareto solution. 
 
Fig. 6: Contour plot of the local error in the X-Y system in case of the Pareto solution. 

The vector field illustrates the adjusted vectors (ΔX, ΔY) of the TLS solution 
 
 
 



 
 

Fig. 1. 
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Fig. 3 
 
 

 
 

 



 
 

Fig. 4 
 
 

 
 



 
 

Fig. 5 
 
 

 
 



 
 

Fig. 6 
 
 

 
 


