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Abstract 
 
First the relevant theory of the interpolation and collocation methods, both used here 
for the recovery of deflections of the vertical and geoid heights from torsion balance 
data is discussed. We have selected a mostly flat area in Hungary where all kind of 
torsion balance measurements are available at 249 points. There were 3 astrogeodetic 
points providing initial data for the interpolation, and there were geoid heights at 10 
checkpoints interpolated from an independent gravimetric geoid solution. The size of 
our test area is about 800 km2  and the average site distance  of torsion balance data is 
1.5 - 2 km. The interpolation method provided a least squares solution for deflections of 
the vertical and geoid heights at all points of the test network. By collocation two 
independent solutions were computed from  zxW  , zyW   and  xxyy WW −  , 2 xyW   gradients 
for all the above, using astrogeodetic data to achieve a complete agreement at these sites 
with the interpolation method. These two solutions agreed at the cm level for geoid 
heights. The standard deviation of geoid height differences at checkpoints were about   
±1-3 cm.  The  xxyy WW −  ,  2 xyW   combination (i.e. pure horizontal gradients) yielded 
better results  since the maximum geoid height difference was only 3.6 cm. The 
differences in the deflection components were generally below  1”,  slightly better for the  
η   component. The above results confirm the fact that torsion balance measurements 
give good possibility to compute very precise local geoid heights at least for flat areas. 
 
1. INTERPOLATION OF DEFLECTION OF THE VERTICAL 
 
A very simple relationship based on potential theory can be written for the changes of  

ikξ∆   and  ikη∆   between arbitrary points  i  and  k  of the deflection of the vertical 
components  ξ  and  η  as well as for gravity gradients  xxyy WWW −=∆   and  xyW2   
measured by torsion balance: 
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where  xxyy WWW −=∆  ,  xxyy UUU −=∆  ,  iks   is the distance between points  i  and  k ,   
g  is the average value of gravity between them,   xxU  ,  yyU   and  xyU   are gravity 
gradients in the normal gravity field, whereas  ikα   is the azimuth between the two 
points (Völgyesi 1993, 1995). Writing the left side of Eq. (1) in other form it follows: 
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The computation being fundamentally an integration, practically possible only by 
approximation, in deriving  (1) or (2)  it had to be assumed that the change of gravity 
gradients between points  i  and  k , measured by torsion balance, was linear − thus the 
equality sign in (1) or (2) is valid only for this case (Völgyesi 1993). 
 
2. COMPUTATION OF LOCAL GEOID HEIGHTS 
 
Geoid undulation difference ikN∆  can be computed from  ξ , η  components 
interpolated by (2) between points  iP   and  kP  using the method of astronomical 
levelling:  
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To eliminate an important problem of classical computation of astronomical levelling we 
used the original torsion balance measurement points directly for the geoid computation 
instead of regular grid points - as it was suggested earlier (Völgyesi, 1998, 2001). In this 
case we use a net of triangles instead of squares, and (3) gives the relationship between 
components of deflection of the vertical  ξ , η  and the geoid height change  N∆   for 
each triangle sides in an arbitrary azimuth  α . To reduce the number of unknowns we 
considered geoid heights  N  directly as unknowns instead of differences  ∆N  for a pair 
of network points: 
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This significantly reduces the number of unknowns, namely, there will be one unknown 
for each point rather than per triangle side. In an arbitrary network, there are much less 
of points than of sides, since according to the classic principle of triangulation, every new 
point joins the existing network by two sides. For a homogeneous triangulation network, 
the  side/point  ratio may be higher than two. Moreover in this case writing constraints 
(going around each triangles of network the sum of   N∆   differences for the three sides 
must be zero) is not required for the triangles, they being contained in the established 
observation equations (4). For an interpolation net with  m  points with known geoid 
heights, with the relevant constraints the number of unknowns may be further reduced, 
with an additional size reduction of the matrix of normal equations. 
 



Let us see now, how to complete computation for an arbitrary network with more points 
than needed for an unambiguous solution, where initial geoid heights are known. In this 
case the unknown  N  values are determined by adjustment. A relation between 
components of deflection of the vertical  ξ , η  and unknown geoid heights  N  can be 
obtained from (4), where 
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is constant for each triangle side. The question arises what data are to be considered as 
measurements for adjustment: the components of deflection of the vertical  ξ  and η,  or  

ikC   values from (5). Since no simple relationship (observation equation) with a 
measurement result on one side, and unknowns on the other side of an equation can be 
written, computation ought to be made under conditions of adjustment of direct 
measurements, rather than with measured unknowns - this is, however, excessively 
demanding for computation, requiring excessive storage capacity. Hence on behalf of 
measurements, two approximations can be applied:   i) geoid heights are left 
uncorrected - thus, they are input to adjustment as constraints,   ii) ikC  on the left hand 
side of fundamental equation (5) are considered as fictitious measurements and 
corrected. Thereby observation equation (4) becomes: 
 
 ikikik NNvC −=+  (6) 
 
permitting computation under conditions given by adjusting indirect measurements 
between unknowns. The first approximation is justified since reliability of given  N  
values exceeds that of the computed values considerably (a principle applied also to 
geodetic control networks). Validity of the second approximation will be addressed later 
in connection with the problem of weighting. For every triangle side of the interpolated 
net, an observation equation based on Eq. (6): 
 

ikikik CNNv −−=  
 
may be written. In matrix form: 
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where  A  is the coefficient matrix of observation equations, x  is the vector of unknowns  
N,  l  is the vector of constant terms;  m  is the number of sides in the interpolation net; 
and  n  is the number of points. 
 
3. THE COLLOCATION SOLUTION 
 
The collocation method has successfully been used for recovering gravity anomalies and 
geoid heights using torsion balance measurements in various test areas of Hungary 
(Tóth et al, 2002a,b). 
 



3.1 Detrending of gradients 
 
First, geodetic coordinates of all the 249 points were computed in the WGS-84 
geocentric system from plane coordinates in the Hungarian Unified National Projection 
System (EOV). This was required for the GRAVSOFT software used for collocation 
(Tschering, 1994). Second, residual gravity gradients were created by a two-step 
process. In the first step the following normal effects on the gradients have been 
removed 
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where eγ  is the normal gravity at the equator, β  denotes gravity flattening and M and N 
are curvatures in the meridian and prime vertical directions, respectively at the point 
with latitude ϕ  and normal gravity γ . 
 
 

Table 1. Statistics of residual gravity gradients in E.U. after removing the normal 
 effect and a linear trend from 249 torsion balance measurements. 

 
measurement mean min. max. std.dev. 

Wxz  0.74 -24.8 31.8 ±10.0 
Wyz -0.81 -33.7 33.1 ±11.3 
2Wxy  1.38 -65.6 42.5 ±14.4 
W∆ -3.53 -69.5 43.8 ±13.1 

 
In the second step a local linear ),(1 λϕf   trend has been removed from the residual 
gradients 
 
 )()(),( 030211 λ−λ+ϕ−ϕ+=λϕ cccf . (9) 
 
In this equation  c1 , c2 , c3  and  ϕ0 , λ0  are constants, whereas  ϕ and λ are geodetic 
latitude and longitude of points, respectively. This procedure was similar to the one used 
by Hein and Jochemczyk (1979) in Germany when modeling local covariance functions 
from torsion balance gradients. Statistics of the residuals can be found in Table 1. 
 
3.2 Covariance function determination 
 
Two empirical covariance functions were determined for the selected area from trend-
reduced gravity gradients. The first determination was based on the mixed horizontal-
vertical combination (gradient combination){ }yzxz WW , , while the second one was 
based on the pure horizontal combination of gradients (curvature combination) 



{ }xxyyxy WWW −,2 . The next step was to approximate these empirical functions by a 
covariance model. The Tscherning-Rapp model 2 with B=4 in the denominator was 
chosen for this purpose (Tscherning, 1994). Therefore, the degree variances of the 
disturbing potential were 
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The empirical and model covariance functions are shown in Fig. 1. 
 

 
Fig. 1. Autocovariance functions for the test area computed from gradients or 

curvatures. A linear trend was removed from the residual gradients. 
 
 
 
The collocation formula is given by e.g. Moritz (1980) 
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)(ψaaaaWWC  is the auto covariance function of the  ∆Waa  residual gradients (the index aa 
denotes either the combination of gradients or curvatures), )(ψaaNWC  is the cross 
covariance function of geoid heights and residual gradients. Similar formulas apply if 
the  (ξ , η)  deflections of the vertical are predicted instead of the geoid heights N. These 



formulas were used with the above determined model covariance functions to predict 
various gravity field quantities for the test area, namely geoid heights and deflections of 
the vertical. 

 
4. TEST COMPUTATIONS 
 
Test computations were performed in a Hungarian area extending over about 800 2km . 
There were 249 torsion balance stations, and 13 points (3 astrogeodetic, and 10 
astrogravimetric points) among them where  ξ , η  and  N  values were known in this test 
area referring to the GRS80 system. The 3 astrogeodetic points indicated with squares in 
Fig. 2 were used as initial (fixed) points of interpolations and the 10 astrogravimetric 
points indicated with triangles in Fig. 2  were used for checking of computations. 
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Fig. 2  The test area. Coordinates are in meters in the Hungarian Unified National 

Projections (EOV) system. 
 
 
The interpolation network in  Fig. 2  has 249 points in all and 246 of these are points 
with unknown deflections. Since there are two unknown components of deflection of the 
vertical at each point there are 498 unknowns for which 683 equations can be written. 
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Fig. 3  Computed ξ component from collocation. Isoline interval is 0.1” 
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Fig. 4  Computed η component from collocation. Isoline interval is 0.1” 

 
In  Figs. 3 and 4   ξ  and  η  components of deflections of the vertical are visualized in 
isoline maps that resulted from the collocation solution.  



 
Based on the previously computed deflection of the vertical components, geoid 
computations were carried out. The computed geoid map can be seen on  Fig. 5.   
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Fig. 5  Geoid heights from collocation ( ∆W  ,  2 xyW  solution). Contor interval is 0.01m.  

 
In order to be conformant with the interpolation solution, we have used for the 
numerical tests the same 3 astrogeodetic fixed points (Fig. 2) for the collocation. This 
was achieved by assigning very large weights (small standard deviations) to these three 
stations. (The uniform standard deviation of residual gravity gradients during the 
prediction step was assigned as ±2 E.U., while these fixed points were assigned the 
standard deviations of ±0.0001 m or ±0.001" in case of geoid height or deflection 
predictions, respectively). Of course, for correct computations, the geoid heights or the 
deflections in these control points have to be of zero mean, i.e. the mean values have to 
be removed before the collocation step. 
 
An independent gravimetric geoid solution for Hungary, the HGTUB2000 solution, 
based on gravity anomalies was used for the evaluation of our predictions with 
interpolation and collocation (Tóth and Rózsa, 2000). Table 2 shows the differences of 
geoid heights at the 10 checkpoints. 
 
The statistics of the geoid height and vertical deflection differences for the collocation 
and interpolation methods are presented in Table 3. These statistics shows that the pure 
horizontal gradients, i.e. the Wxx-Wyy, 2Wxy in this area at the 10 checkpoints yielded a 
better fit to both the gravimetric geoid undulations and astronomical deflection of the 
vertical. Therefore no collocation solution was provided with all the four gradients  ∆W  ,  



2 xyW  , zxW  , zyW  .  The η component fits better than the ξ component in both 
collocation solution with the interpolated deflections. 
 

Table 2. Geoid height differences with reference gravimetic geoid heights at 10 
checkpoints for the interpolation and collocation method [mm]. 

 
Checkpoint No. Ngrav-Nint Ngrav-Ncoll{Wxz,Wyz} Ngrav-Ncoll{2Wxy,W∆} 

991 27 3 -8 
1008 102 2 22 
1024 99 32 36 
1082 145 59 34 
1107 32 15 0 
1135 -79 -9 -6 
1183 31 44 18 
1190 40 94 3 
1198 104 58 27 
1245 -124 -23 -23 

std. deviation: ±80 ±35 ±19 
 
Surface maps of the ξ  and η  components of deflections of the vertical and an isoline 
map of geoid undulation differences between collocation and interpolation are visualized 
in Figs. 6, 7 and 8 respectively. The isoline map of the geoid undulation differences 
shows mainly a linear trend in the Eastern part of the area, ranging from 6 to –12 cm. 
 
 
 

 
Fig.6   ξ differences between collocation and interpolation. Units are arcseconds [“] 

on the vertical axis. 
 



 
Fig.7   η differences between collocation and interpolation. Units are arcseconds [“] 

on the vertical axis. 
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Fig.8   N differences between collocation and interpolation. Isoline interval is 0.01m. 

 
 
 



Table 3. Statistics of geoid height differences [m] and deflections of the vertical ["] at 10 
checkpoints between the collocation and interpolation methods. 

 
 min. max. mean std.dev. 
Ncoll{Wxz,Wyz}-Nint -0.104 0.114 0.013 ±0.057 
ξcoll{Wxz,Wyz}-ξint -2.249 1.566 -0.157 ±0.875 
ηcoll{Wxz,Wyz}-ηint -1.768 2.223 0.512 ±0.774 
Ncoll{2Wxy,W∆}-Nint -0.110 0.117 0.026 ±0.054 
ξcoll{2Wxy,W∆}-ξint -2.034 1.634 -0.144 ±0.735 
ηcoll{2Wxy,W∆}-ηint -1.301 2.207 0.558 ±0.697 

 
 
CONCLUSIONS 
 
By collocation two independent solutions for deflections of the vertical and geoid heights 
were computed from  zxW  , zyW   and  ∆W  , 2 xyW   gradients, using astrogeodetic data to 
achieve an agreement with the interpolation method. The standard deviation of geoid 
height differences at checkpoints were about   ±1-3 cm.  The  ∆W  ,  2 xyW   combination 
yielded slightly better results  since the maximum geoid height difference was only 3.6 
cm. The differences in the deflection components were generally below  1”,  slightly 
better for the  η   component. The geoid height differences between interpolation and 
collocation  may be partly caused by the different treatment of the torsion balance data 
(trend removal). The results confirm the fact that gravity gradients give good possibility 
to compute very precise local geoid heights. Since it is possible to compute geoid heights 
and deflections of the vertical by surface integration it would be interesting to compare 
this method with interpolation by line integration as well. 
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