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Abstract

First the relevant theory of the interpolation and collocation methods, both used here
for the recovery of deflections of the vertical and geoid heights from torsion balance
data is discussed. We have selected a mostly flat area in Hungary where all kind of
torsion balance measurements are available at 249 points. There were 3 astrogeodetic
points providing initial data for the interpolation, and there were geoid heights at 10
checkpoints interpolated from an independent gravimetric geoid solution. The size of
our test area is about 800 km® and the average site distance of torsion balance data is
1.5 - 2 km. The interpolation method provided a least squares solution for deflections of
the vertical and geoid heights at all points of the test network. By collocation two
independent solutions were computed from W_, W_ and W, —-W, _ ,2W  gradients

for all the above, using astrogeodetic data to achieve a complete agreement at these sites
with the interpolation method. These two solutions agreed at the cm level for geoid
heights. The standard deviation of geoid height differences at checkpoints were about
t1-3 em. The W, —-W, _ , 2W _ combination (i.e. pure horizontal gradients) yielded

better results since the maximum geoid height difference was only 3.6 cm. The
differences in the deflection components were generally below 17, slightly better for the
n component. The above results confirm the fact that torsion balance measurements

give good possibility to compute very precise local geoid heights at least for flat areas.

1. INTERPOLATION OF DEFLECTION OF THE VERTICAL

A very simple relationship based on potential theory can be written for the changes of
A, and An, between arbitrary points i and k of the deflection of the vertical

components & and m as well as for gravity gradients W, =W -W _ and 2W,

measured by torsion balance:
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where W, =W -W_, U,=U, -U, , s, isthedistance between points i and k,

g is the average value of gravity between them, U U, and U, are gravity
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gradients in the normal gravity field, whereas o, is the azimuth between the two

points (Volgyesi 1993, 1995). Writing the left side of Eq. (1) in other form it follows:
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The computation being fundamentally an integration, practically possible only by
approximation, in deriving (1) or (2) it had to be assumed that the change of gravity
gradients between points i and k&, measured by torsion balance, was linear — thus the
equality sign in (1) or (2) is valid only for this case (Volgyesi 1993).

2. COMPUTATION OF LOCAL GEOID HEIGHTS

Geoid undulation difference AN, can be computed from & , 1 components
interpolated by (2) between points P, and P, using the method of astronomical
levelling:
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To eliminate an important problem of classical computation of astronomical levelling we
used the original torsion balance measurement points directly for the geoid computation
instead of regular grid points - as it was suggested earlier (Volgyesi, 1998, 2001). In this
case we use a net of triangles instead of squares, and (3) gives the relationship between
components of deflection of the vertical &, n and the geoid height change AN for
each triangle sides in an arbitrary azimuth o . To reduce the number of unknowns we
considered geoid heights N directly as unknowns instead of differences AN for a pair
of network points:
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This significantly reduces the number of unknowns, namely, there will be one unknown
for each point rather than per triangle side. In an arbitrary network, there are much less
of points than of sides, since according to the classic principle of triangulation, every new
point joins the existing network by two sides. For a homogeneous triangulation network,
the side/point ratio may be higher than two. Moreover in this case writing constraints
(going around each triangles of network the sum of AN differences for the three sides
must be zero) is not required for the triangles, they being contained in the established
observation equations (4). For an interpolation net with m points with known geoid
heights, with the relevant constraints the number of unknowns may be further reduced,
with an additional size reduction of the matrix of normal equations.



Let us see now, how to complete computation for an arbitrary network with more points
than needed for an unambiguous solution, where initial geoid heights are known. In this
case the unknown N values are determined by adjustment. A relation between
components of deflection of the vertical £, and unknown geoid heights N can be
obtained from (4), where
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is constant for each triangle side. The question arises what data are to be considered as
measurements for adjustment: the components of deflection of the vertical £ and 1, or
C, values from (5). Since no simple relationship (observation equation) with a

measurement result on one side, and unknowns on the other side of an equation can be
written, computation ought to be made under conditions of adjustment of direct
measurements, rather than with measured unknowns - this is, however, excessively
demanding for computation, requiring excessive storage capacity. Hence on behalf of
measurements, two approximations can be applied: i) geoid heights are left
uncorrected - thus, they are input to adjustment as constraints, ii) C, on the left hand

side of fundamental equation (5) are considered as fictitious measurements and
corrected. Thereby observation equation (4) becomes:

C,+vy=N,—-N, (6)

permitting computation under conditions given by adjusting indirect measurements
between unknowns. The first approximation is justified since reliability of given N
values exceeds that of the computed values considerably (a principle applied also to
geodetic control networks). Validity of the second approximation will be addressed later
in connection with the problem of weighting. For every triangle side of the interpolated
net, an observation equation based on Eq. (6):

Vi =Ny =N, =Cy
may be written. In matrix form:

v=A x+ |
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where A is the coefficient matrix of observation equations, x is the vector of unknowns
N, 1 is the vector of constant terms; m is the number of sides in the interpolation net;
and n is the number of points.

3. THE COLLOCATION SOLUTION

The collocation method has successfully been used for recovering gravity anomalies and
geoid heights using torsion balance measurements in various test areas of Hungary
(Toth et al, 2002a,b).



3.1 Detrending of gradients

First, geodetic coordinates of all the 249 points were computed in the WGS-84
geocentric system from plane coordinates in the Hungarian Unified National Projection
System (EOV). This was required for the GRAVSOFT software used for collocation
(Tschering, 1994). Second, residual gravity gradients were created by a two-step
process. In the first step the following normal effects on the gradients have been
removed
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where vy, is the normal gravity at the equator, 3 denotes gravity flattening and M and N

are curvatures in the meridian and prime vertical directions, respectively at the point
with latitude ¢ and normal gravity vy.

Table 1. Statistics of residual gravity gradients in E.U. after removing the normal
effect and a linear trend from 249 torsion balance measurements.

measurement mean min. max. std.dev.
Wy, 0.74 -24.8 31.8 +10.0
Wy, -0.81 -33.7 33.1 +11.3
2W,, 1.38 -65.6 42.5 +14.4
Wa -3.53 -69.5 43.8 +13.1

In the second step a local linear f,(¢,A) trend has been removed from the residual
gradients

fl(q),l.):cl+c2((p—(p0)+cs(7\,—7\,0). )

In this equation ¢, ,c,,c, and ¢@,, A, are constants, whereas ¢ and A are geodetic

latitude and longitude of points, respectively. This procedure was similar to the one used
by Hein and Jochemczyk (1979) in Germany when modeling local covariance functions
from torsion balance gradients. Statistics of the residuals can be found in Table 1.

3.2 Covariance function determination

Two empirical covariance functions were determined for the selected area from trend-
reduced gravity gradients. The first determination was based on the mixed horizontal-
vertical combination (gradient combination) { w.., Wyz}, while the second one was

based on the pure horizontal combination of gradients (curvature combination)
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ws W =W } The next step was to approximate these empirical functions by a
covariance model. The Tscherning-Rapp model 2 with B=4 in the denominator was
chosen for this purpose (Tscherning, 1994). Therefore, the degree variances of the

disturbing potential were

o(T) = A (>3,

(10)
(=D —2)(L +4)

The empirical and model covariance functions are shown in Fig. 1.
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Fig. 1. Autocovariance functions for the test area computed from gradients or
curvatures. A linear trend was removed from the residual gradients.

The collocation formula is given by e.g. Moritz (1980)

CWMW

denotes either the combination of gradients or curvatures),

covariance function of geoid heights and residual gradients. Similar formulas apply if
the (§,n) deflections of the vertical are predicted instead of the geoid heights N. These

N(P)=

CM (y )€ Halbur (v ) AW,

“(y) is the auto covariance function of the AW,, residual gradients (the index aa

C™«(y) is the cross



formulas were used with the above determined model covariance functions to predict
various gravity field quantities for the test area, namely geoid heights and deflections of
the vertical.

4. TEST COMPUTATIONS

Test computations were performed in a Hungarian area extending over about 800 km”.
There were 249 torsion balance stations, and 13 points (3 astrogeodetic, and 10
astrogravimetric points) among them where & ,n and N values were known in this test
area referring to the GRS80 system. The 3 astrogeodetic points indicated with squares in
Fig. 2 were used as initial (fixed) points of interpolations and the 10 astrogravimetric
points indicated with triangles in Fig. 2 were used for checking of computations.
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Fig. 2 The test area. Coordinates are in meters in the Hungarian Unified National
Projections (EOV) system.

The interpolation network in Fig. 2 has 249 points in all and 246 of these are points
with unknown deflections. Since there are two unknown components of deflection of the
vertical at each point there are 498 unknowns for which 683 equations can be written.
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Fig. 3 Computed £ component from collocation. Isoline interval is 0.1”
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Fig. 4 Computed 1 component from collocation. Isoline interval is 0.1”

In Figs.3and 4 ¢ and 7 components of deflections of the vertical are visualized in
isoline maps that resulted from the collocation solution.



Based on the previously computed deflection of the vertical components, geoid
computations were carried out. The computed geoid map can be seen on Fig. S.
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Fig. 5 Geoid heights from collocation (W, , 2W,, solution). Contor interval is 0.01m.

In order to be conformant with the interpolation solution, we have used for the
numerical tests the same 3 astrogeodetic fixed points (Fig. 2) for the collocation. This
was achieved by assigning very large weights (small standard deviations) to these three
stations. (The uniform standard deviation of residual gravity gradients during the
prediction step was assigned as +£2 E.U., while these fixed points were assigned the
standard deviations of +£0.0001 m or +0.001" in case of geoid height or deflection
predictions, respectively). Of course, for correct computations, the geoid heights or the
deflections in these control points have to be of zero mean, i.e. the mean values have to
be removed before the collocation step.

An independent gravimetric geoid solution for Hungary, the HGTUB2000 solution,
based on gravity anomalies was used for the evaluation of our predictions with
interpolation and collocation (Toth and Rozsa, 2000). Table 2 shows the differences of
geoid heights at the 10 checkpoints.

The statistics of the geoid height and vertical deflection differences for the collocation
and interpolation methods are presented in Table 3. These statistics shows that the pure
horizontal gradients, i.e. the W.-W,,, 2W,, in this area at the 10 checkpoints yielded a
better fit to both the gravimetric geoid undulations and astronomical deflection of the
vertical. Therefore no collocation solution was provided with all the four gradients W, ,



» W, . The n component fits better than the £ component in both

collocation solution with the interpolated deflections.

X

2w, W

Table 2. Geoid height differences with reference gravimetic geoid heights at 10
checkpoints for the interpolation and collocation method [mm].

Checkpoint No. Ngrav Nint Ngrav'Ncoll{szawyz} NgraV'Ncoll{ZnysWA}

991 27 3 -8
1008 102 2 22
1024 99 32 36
1082 145 59 34
1107 32 15 0
1135 -79 -9 -6
1183 31 44 18
1190 40 94 3
1198 104 58 27
1245 -124 -23 -23

std. deviation: +80 +35 +19

Surface maps of the £ and 7 components of deflections of the vertical and an isoline
map of geoid undulation differences between collocation and interpolation are visualized
in Figs. 6, 7 and 8 respectively. The isoline map of the geoid undulation differences
shows mainly a linear trend in the Eastern part of the area, ranging from 6 to —12 cm.
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Table 3. Statistics of geoid height differences [m] and deflections of the vertical ["'] at 10
checkpoints between the collocation and interpolation methods.

min. max. mean std.dev.
Neott{ Wz Wy} -Nint -0.104 0.114 0.013 +0.057
Ecott{ Wz, Wyz}-Eint -2.249 1.566 -0.157 +0.875
Neottd Wiz Wyz} Nine -1.768 2.223 0.512 +0.774
Neon{2Wyy, Wa}-Nint -0.110 0.117 0.026 +0.054
Ecol{2Wxy, Wa}-Eint -2.034 1.634 -0.144 +0.735
Neot1 {2 Wiy, Wa}-Tint -1.301 2.207 0.558 +0.697

CONCLUSIONS

By collocation two independent solutions for deflections of the vertical and geoid heights
were computed from W_, W_ and W, ,2W _  gradients, using astrogeodetic data to

achieve an agreement with the interpolation method. The standard deviation of geoid
height differences at checkpoints were about *1-3 cm. The W, , 2W_  combination

yielded slightly better results since the maximum geoid height difference was only 3.6
cm. The differences in the deflection components were generally below 17, slightly
better for the mn component. The geoid height differences between interpolation and

collocation may be partly caused by the different treatment of the torsion balance data
(trend removal). The results confirm the fact that gravity gradients give good possibility
to compute very precise local geoid heights. Since it is possible to compute geoid heights
and deflections of the vertical by surface integration it would be interesting to compare
this method with interpolation by line integration as well.
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