COMPARISON OF INTERPOLATION
AND COLOLOCATION TECHNIQUES
USING TORSION BALANCE DATA

Gyula TOTH - Lajos VOLGYESI
Dept. of Geodesy and Surveying
Budapest University of Technology and Economics
Ivolgyesi@epito.bme.hu / Fax: +36-1463-3192
http:/sci.fgt.bme.hu/volgyesi

SUMMARY

The relevant theory of the interpolation and
collocation methods, both used here for the recovery of
deflections of the vertical and geoid heights from torsion
balance data is discussed.

We have selected a test area in Hungary where all
kind of torsion balance measurements are available at
249 points. There were 3 astrogeodetic points providing
initial data for the interpolation, and there were geoid
heights at 10 checkpoints computed from an
independent gravimetric geoid solution.

The interpolation method provided a least squares
solution for deflections of the vertical and geoid heights
at all points of the test network. By collocation two

independent solutions were computed from W, , W,

and W, -W,. ,2W, gradients for all the above, using

astrogeodetic data to achieve a complete agreement at
these sites with the interpolation method.



These two solutions agreed at the cm level for geoid
heights. The standard deviation of geoid height
differences at checkpoints were about +1-3 cm.

1. INTERPOLATION OF DEFLECTION OF THE VERTICAL

A very simple relationship based on potential theory
can be written for the changes of A&, and An,
between arbitrary points i and k of the deflection of the
vertical components & and n as well as for gravity
gradients W, =w, -W, and 2W,  measured by

torsion balance:
ALy sinoy; — A, costy,; =

Zi {[(WA ~Uy); +(W, —UA)k]sinZ(xik "‘[(ch _ny)i +(W€Cy _ny)k]zcoszaik }
(1)

where W,=W, -W, , U,=U,,-U,, , sy Iis the

distance between points i and k, g is the average

value of gravity between them, U, , U, and U, are

gravity gradients in the normal gravity field, whereas o
is the azimuth between the two points.

The computation being fundamentally an integration,
practically possible only by approximation, in deriving
(1) it had to be assumed that the change of gravity
gradients between points i and k, measured by torsion
balance, was linear — thus the equality sign in (1) is valid
only for this case.

2. COMPUTATION OF LOCAL GEOID HEIGHTS

Geoid undulation difference AN,, can be computed
from & , n components interpolated by (1) between



points P; and P, using the method of astronomical
levelling:

: 1 .+
AN, = (%cosaik +%sinaik)sik : (2)

To eliminate an important problem of classical
computation of astronomical levelling we used the
original torsion balance measurement points directly for
the geoid computation instead of regular grid points. In
this case we use a net of triangles instead of squares,
and (2) gives the relationship between components of
deflection of the vertical & , n and the geoid height
change AN for each triangle sides in an arbitrary
azimuth o .

To reduce the number of unknowns we considered
geoid heights N directly as unknowns instead of
differences AN for a pair of network points:

1

N, —N; = (%cosaik 4+ i —;nk sinoc,-k)s,-k . (3)

This significantly reduces the number of unknowns,
namely, there will be one unknown for each point rather
than per triangle side (in an arbitrary network, there are
much less of points than of sides).

Let us see now, how to complete computation for an
arbitrary network with more points than needed for an
unambiguous solution, where initial geoid heights are
known. In this case the unknown N values are
determined by adjustment. A relation between
components of deflection of the vertical ¢ , n and
unknown geoid heights N can be obtained from (3),
where



. + . +
Ci = (&, ng cosa;, + N an sinoc,-k)sik (4)

is constant for each triangle side. On behalf of
measurements, two approximations can be applied: i)
geoid heights are left uncorrected - thus, they are input
to adjustment as constraints, ii) C;, on the left hand side

of fundamental equation (4) are considered as fictitious
measurements and corrected. Thereby observation
equation (3) becomes:

Ci +viy = Ny — N, (5)

permitting computation under conditions given by
adjusting indirect measurements between unknowns.

3. THE COLLOCATION SOLUTION

The collocation method has successfully been used
for recovering gravity anomalies and geoid heights using
torsion balance measurements in various test areas of
Hungary.

3.1 Detrending of gradients

First, residual gravity gradients were created by a
two-step process. In the first step the normal effects on
the gradients have been removed.

In the second step a local linear f,;(p,A) trend has

been removed from the residual gradients
J1(@,A) = ¢ + (@ —@y) + c3(A —Xy). (6)

In this equation c¢;,c,,c; and ¢y,A, are constants,
whereas ¢ and A are geodetic latitude and longitude of



points, respectively. This procedure was similar to the
one used by Hein and Jochemczyk in Germany when
modeling local covariance functions from torsion
balance gradients. Statistics of the residuals can be
found in Table 1.

Table 1. Statistics of residual gravity gradients in E.U. after
removing the normal effect and a linear trend from 249 torsion
balance measurements.

measurement mean min. max. std.dev.
W, 0.74 -24.8 31.8 +10.0
W, -0.81 -33.7 33.1 +11.3
2W,, 1.38 -65.6 42.5 +14.4
Wi -3.53 -69.5 43.8 +13.1

3.2 Covariance function determination

Two empirical covariance functions were determined
for the selected area from trend-reduced gravity
gradients. The first determination was based on the
mixed horizontal-vertical combination (gradient
combination) { W, ., W, |, while the second one was

Xz?
based on the pure horizontal combination of gradients
(curvature combination) {2W,,, W, -W,. . The next

step was to approximate these empirical functions by a
covariance model. The Tscherning-Rapp model 2 with
B=4 in the denominator was chosen for this purpose.
Therefore, the degree variances of the disturbing
potential were

2o A
o) = (0 =1)({ = 2)(¢ +4) f23 (")

The empirical and model covariance functions are
shown in Fig. 1.
The collocation formula is given by e.g. Moritz (1980)



N(P)=CMaa (y p)( "9 aa (y ) AW, (8)

c"aa%aa () is the auto covariance function of the AW.,,
residual gradients (the index aa denotes either the

combination of gradients or curvatures), C""4 (y) is the
cross covariance function of geoid heights and residual
gradients. Similar formulas apply if the (&, 1) deflections
of the vertical are predicted instead of the geoid heights
N. These formulas were used with the above determined
model covariance functions to predict various gravity
field quantities for the test area, namely geoid heights
and deflections of the vertical.
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Fig. 1. Autocovariance functions for the test area computed
from gradients or curvatures. A linear trend was removed from
the residual gradients.



4. TEST COMPUTATIONS

Test computations were performed in a Hungarian

area extending over about 800km’. There were 249
torsion balance stations, and 13 points (3 astrogeodetic,
and 10 astrogravimetric points) among them where ¢, n

and N values were known in this test area referring to
the GRS80 system. The 3 astrogeodetic points indicated
with squares in Fig. 2 were used as initial (fixed) points of
interpolations and the 10 astrogravimetric points
indicated with triangles in Fig. 2 were used for checking
of computations.
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Fig. 2 The test area. Coordinates are in meters in the Hungarian
Unified National Projections (EOV) system.

In Figs. 3 and 4 & and 7 components of
deflections of the vertical are visualized in isoline maps
that resulted from the collocation solution.
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Fig. 3 Computed  from collocation. Isoline interval is 0.1”
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Fig. 4 Computed n from collocation. Isoline interval is 0.1”



Based on the previously computed deflection of the
vertical components, geoid computations were carried
out. The computed geoid map can be seen on Fig. 5.
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Fig. 5 Geoid heights from collocation (W, , 2W,, solution).
Contor intervall is 0.01m.

In order to be conformant with the interpolation
solution, we have used for the numerical tests the same 3
astrogeodetic fixed points (Fig. 2) for the collocation.
This was achieved by assigning very large weights (small
standard deviations) to these three stations. (The uniform
standard deviation of residual gravity gradients during
the prediction step was assigned as *2 E.U., while these
fixed points were assigned the standard deviations of
+0.0001 m or £0.001" in case of geoid height or deflection
predictions, respectively). Of course, for correct
computations, the geoid heights or the deflections in
these control points have to be of zero mean, i.e. the



mean values have to be removed before the collocation
step.

An independent gravimetric geoid solution for
Hungary, based on gravity anomalies was used for the
evaluation of our predictions with interpolation and
collocation. Table 2 shows the differences of geoid
heights at the 10 checkpoints.

The statistics of the geoid height and vertical
deflection differences for the collocation and
interpolation methods are presented in Table 3. These
statistics shows that the pure horizontal gradients, i.e.
the W, , 2W,, in this area at the 10 checkpoints yielded

a better fit to both the gravimetric geoid undulations and
astronomical deflection of the vertical. Therefore no
collocation solution was provided with all the four

gradients W, , 2ny W s W,

Table 2. Geoid height differences with reference gravimetic
geoid heights at 10 checkpoints for the interpolation and
collocation method [mm].

Checkpoint Ngrav'Nint Ngrav' Ngrav'
No. Ncoll{wxz;wyz} Ncoll{zwxyaWA}_
991 27 3 -8

1008 102 2 22
1024 99 32 36
1082 145 59 34
1107 32 15 0
1135 -79 -9 -6
1183 31 44 18
1190 40 94 3
1198 104 58 27
1245 -124 -23 -23

std. dev.: +80 +35 +19
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Fig.6 ¢ differences between collocation and interpolation.
Units are ascseconds [“] on the vertical axis.
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Fig.7 n differences between collocation and interpolation.
Units are ascseconds [“] on the vertical axis.

Surface maps of the £ and n components of
deflections of the vertical and an isoline map of geoid
undulation differences between collocation and
interpolation are visualized in Figs. 6, 7 and 8
respectively. The isoline map of the geoid undulation



differences shows mainly a linear trend in the Eastern
part of the area, ranging from 6 to —12 cm.
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Table 3. Statistics of geoid height differences [m] and
deflections of the vertical ["] at 10 checkpoints between the
collocation and interpolation methods.

min. max. mean std.dev.
Neot{Wxz;Wyz}-Nint  -0.104 0.114 0.013 +0.057
E col{Wixz, Wyz}Eint -2.249 1.566 -0.157 +0.875
Neotl{Wxz; Wyz}-1int -1.768 2.223 0.512 +0.774
Ncoi{2Wyy,W,}-Nine  -0.110 0.117 0.026 +0.054
Ecoll{2Wiy, W }-Eint -2.034 1.634 -0.144 +0.735
Neol{2Wxy, Wr}nint  -1.301 2.207 0.558 +0.697

CONCLUSIONS

By collocation two independent solutions for
deflections of the vertical and geoid heights were



computed from W, , W, and W,=W, -W. , 2W,,

gradients, using astrogeodetic data to achieve an
agreement with the interpolation method.

The statistics of the geoid height and vertical
deflection differences for the collocation and
interpolation methods shows that the pure horizontal
gradients, i.e. the W, , 20, in this area at the 10

checkpoints yielded a better fit to both the gravimetric
geoid undulations and astronomical deflection of the
vertical.

The standard deviation of geoid height differences at
checkpoints were about +1-3 cm, and differences in the
deflection components were generally below 1”.

The geoid height differences between interpolation
and collocation may be partly caused by the different
treatment of the torsion balance data (trend removal).

The results confirm the fact that gravity gradients
give good possibility to compute very precise local geoid
heights.

Since it is possible to compute geoid heights and
deflections of the vertical by surface integration it would
be interesting to compare this method with interpolation
by line integration as well.

* %k ok

Toéth Gy, Volgyesi L (2002): Comparison of interpolation and collocation techniques using torsion
balance data. European Geophysical Society XX VII General Assembly, Nice, France, 21-26 April
2002. Geophysical Research Abstracts, European Geophysical Society, Vol. 4.

Dr. Lajos VOLGYESI, Department of Geodesy and Surveying, Budapest University of
Technology and Economics, H-1521 Budapest, Hungary, Miegyetem rkp. 3.
Web: http://sci.fgt.bme.hu/volgyesi E-mail: volgyesi@eik.bme.hu




