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Sequence of neural networks has been applied to high accuracy regression in 3D as 
data representation in form  z = f(x,y).  The first term of this series of networks 
estimates the values of the dependent variable as it is usual, while the second term 
estimates the error of the first network, the third term estimates the error of the second 
network and so on. Assuming that the relative error of every network in this sequence is 
less than 100 %, the sum of the estimated values converges to the values to be 
estimated, therefore the estimation error can be reduced very significantly and 
effectively. To illustrate this method the geoid of Hungary was estimated via RBF type 
network. The computations were carried out with the symbolic - numeric integrated 
system Mathematica. 
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1 Introductions 

Measured data structure representation frequently carried out by interpolation 
or regression. In case of 2D, it means the approximation of a surface. These tech-
niques may be used on regular grid or irregular grid employing Delaunay trian-
gulation. For global data representation, when the number parameters of the trial 
function to be determined is considerably less than the number of the measured 
points, algebraic or trigonometric polynomials may be applied. Such models can 
be considered not only for computing unmeasured values but for compressing the 
data, too. However, polynomial approaches are limited concerning their accu-
racy. In the last decade neural networks were applied very successfully on many 
fields of data mining and representation. Radial basis function (RBF) network 
proved to be one of the most promising type of neural network models for data 
approximation (Haykin, 1999). In this article, we suggest and improvement of 
neural network modeling in order to increase the estimation accuracy. 

2. Regression via RBF neural network 

Fig. 1 illustrates an RBF network with inputs x, y and output z. The arrows in 
the figure symbolize the signal flow in the network. The RBF network consists of 
one hidden layer of basis functions, or neurons. 
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Fig. 1.  An RBF network with one output 

 
The basis function is a Gaussian bell shape curve  with two parameters  λ, β. 
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The RBF network output is formed by a weighted sum of the neuron outputs 
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where nb the number of neurons. The parameters  (w, β, λ)  are adjusted on the 
bases of the measured triples, called teaching set, },...,1,,,{ nizyx iii =  to 
minimize the deviation between the measured value and the network output in 
the least square sense during the learning process (Freeman, 1994). 

Although, this technique proved to be satisfactory in most of the cases, when 
a surface to be estimated has very sophisticated morphology, one should improve 
the method. 

3. Sequence of neural networks 

In order to improve the estimation of our network, let us suppose that the 
learning process based on the teaching set }...,,1:,,{ nizyx iii =  results a 
network  ),(1 yxN .  The error of this network is 

),(),( 11 yxNyxz −=ε  
Then let us employ a new teaching set  }...,,1:,,{ 1 niyx iii =ε   which 

results a new network ),(2 yxN , to estimate  1ε .  The error of this network is 

),(212 yxN−= εε  

To estimate the error of the  k-th network,  1+kε   in this sequence, we get 

),(11 yxN kkk ++ −= εε  

It means that  m-th order estimation of  z  can be expressed as 
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Let us suppose that the relative error of the k-th order estimation using  p - 
vector norm (for Euclidean norm  p = 2) less then  1  for every  k: 
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It means that the estimation error can be reduced step by step increasing the 
number of terms in this sequence. 
 

4. Application to geoid approximation 

Considerable investigations are in progress recently in Hungary for the de-
termination of geoid heights with a cm accuracy: lithospheric geoid solution 
(Papp and Kalmár, 1996), gravimetric solution HGR97 (Kenyeres, 1999), 
HGTUB98 and HGTUB2000 solution (Tóth and Rózsa, 2000; Tóth et all, 2000). 
The HGTUB2000 geoid heights were used for our investigations. The 
HGTUB2000 gravimetric solution was based on terrestrial gravity data, height 
data, and the EGM96 geopotential model, and was computed with the 1D 
Spherical FFT method (Tóth and Rózsa, 2000). Accuracy of HGTUB2000 geoid 
heights is about  ± 3 - 4 cm. Fig 2 shows the geoid surface in Hungary. 

 
Fig. 2. The HGTUB2000 geoid surface in Hungary 
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Instead of application of this huge geoid database for practical purposes we 
tried to find a simple mathematical formula (an equation of surface of geoid 
forms in Hungary). Using this mathematical formula to compute geoid heights in 
arbitrary points in Hungary would be more simple than using the huge geoid 
database for interpolating the geoid heights between known points, especially if 
it should be implemented in a computational procedure. 

In our former investigations, polynomials were fitted to the known geoid 
heights of grid points, and using this polynomials geoid heights were computed 
for the same grid. Differences between the original and the computed values are 
characteristic of accuracy of geoid heights computed by polynomials. Increasing 
the degree of polynomials, first the accuracy was increased, then above eight 
degree decreased, because of the deterioration of conditions of equations. A new 
method was needed to look for, because the maximum accuracy resulted by 
applying eight degree polynomials was not enough for our purposes. That’s why 
the possibility of applying of neural networks come out. 

HGTUB2000 geoid heights were used in the area  45°30’≤ ϕ ≤ 49° , 16°≤ λ < 
23°; the resolution of the grid was  ∆ϕ=2’30” ×  ∆λ= 4’10”. So the geoid was 
represented by 8484 triples, }8484...,,2,1,,,{ =izyx iii . To estimate the 
geoid, a RBF neural network has been employed with  35 neurons having Gaus-
sian activation functions. Then further neural networks with saturated line 
activation function (decays linearly with the distance from the basis center) 
(Joberg, 2001) were used to reduce the estimation error. The network learned 
fairly well. The most important statistical data describing the quality of the 
estimation are the followings: 
 - Euclidean norm of the error vector, [m]: 
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- maximum error, the greatest element of the error vector in absolute value, [cm]: 

im )(max ε  

- mean value of the error vector components, [m]: 

)( mmM ε  

- standard deviation, [cm]: 

)( mm εσ  

Table 1. shows these statistical values as functions of the estimation order  m. 
 

Tab. 1  Quality of the estimation as function of the estimation order 

m 
mε  im )(max ε  )( mmM ε  )( mm εσ  

1 0.00899  0.585434  -1.30451  10 
- 5

 0.0976828  
4 0.00397  0.362296  -2.35809  10 

- 14
 0.065825  
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The histogram of the error vector components on Fig. 3 characterising also 

the estimation quality. 
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Fig. 3. Histogram of the error vector components in [m] in case of the first and fourth order 

estimation 
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Fig. 4 Differences in [m] between the estimated and the original (HGTUB2000) geoid heights. 

 
 
 

According to Fig. 4 and 5, the RBF neural model provides a very good 
estimation of the geoid heights, especially in the region of Hungary. The 
maximal error of our estimation is the same order than the error of the data to be 
estimated.  
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Fig. 5. Surface picture of differences between the estimated and the HGTUB2000 geoid 

5. Summary 

Employing sequence neural network technique, basically as a regression 
method, the estimation error can be reduced very significantly, even in the case 
of a morphologically so sophisticated data structure, as a geoid. 

Theoretically, the proper approximation of the geoid values, which were not 
included in the teaching set is ensured by the thesis of Kolmogorov (Horváth 
1998), however it should be verified numerically for every different problem. We 
employed the RBF network, because the radial basis type activation function 
proved to be the most efficient in case of function approximation problems (Barsi 
1999 and Veres 2002). The number of neurons in the hidden layer was increased 
up to the value, which resulted smaller approximation error than that of the 
measurement data themselves. According to our experience, the iteration process 
is converging rapidly, and after 3-4 iteration step there was no further significant 
change in the values. 

Using the symbolic computing capability of Mathematica, round-off error 
can be avoid and the structure of the RBF network may be modified much more 
naturally than it is possible in other neural network software tools and the result 
can be easily translated into high level language like C. 
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