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1. Abstract 
Inversion reconstruction of 3D gravity potential based on gravity data measured by 
gravimeters, horizontal gravity gradients and curvature data measured by torsion balance and 
vertical gradients, including vertical deflection data have been obtained by our 3D solution. 
By applying this method the potential function − apart from an additive constant − and all the 
first and second derivatives of this potential function (elements of the full Eötvös tensor) can 
be determined not only at points of the region covered by measurements, but anywhere in the 
surroundings of these measurement points, using the coefficients of expansion in a series of a 
known set of basis function. The advantage of this method is that the solution can be 
performed by a significantly overdetermined inverse problem.  

Computations were made for the inversion reconstruction of gravity potential at a test 
area where gravity, torsion balance, vertical gradient measurements and vertical deflection 
data were available. Gravity potential, vertical deflections and both the first and the second 
derivatives of the potential were determined for the whole area by this suggested method. 
 
2. Introduction 
There are more than 45,000 torsion balance measurements in a computer database in 
Hungary. Earlier measurements were made mainly for geophysical prospecting, but nowadays 
more efficient methods are applied in geophysics and instead of a geophysical application of 
the torsion balance measurements, geodetic applications have come to the front. Possibilities 
of geodetic applications of gravity gradients are continually growing [1] [2] [3] [4] [5].  

Determination of the potential function has great importance because all components of 
the gravity vector, vertical deflection and the elements of the full Eötvös tensor can be derived 
from it as the first and the second derivatives of this function. Now a solution of the 
determination of 3D potential function is given here as an improvement on our former 
solution of 2D inversion [6] and [7]. Besides gravity and gravity gradients, now we have 
integrated vertical deflection data into the computations. Nowadays revolutionary changes are 
expected in geodesy because we have a new system which is capable of measuring very 
precise vertical deflection data with high efficiency [8]. 

For verification of the 3D inversion algorithm, test computations were performed at the 
south part of Csepel Island, a location where gravity, torsion balance, vertical gradient and 
vertical deflection data are available from a new model. 
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3. The inversion algorithm 
Let us choose the 3D gravity potential ),,( zyxW as a series expansion into a known set of 
basis function PΨΨΨ ,...,,. 21 : 
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where  yxy NNkNjin )1()1( −+−+=  and nB  are unknown coefficients of the series 
expansion. In our investigations Legendre polynomials are applied as basis functions. The 
constant term is marked by index 1, so the possibility of i=j=k=1 can be precluded, because 
the potential is unique apart from an additive constant. 

The second derivatives of the potential Eq. (1) (the elements of the Eötvös tensor) give the 
computed values of horizontal gradients zxW , zyW , curvature data ΔW , xyW  and vertical 
gradients zzW  as 
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where the prime ′ denotes differentiation with respect to the argument of the basis function. 

The required first derivatives for the inversion algorithm are 
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Because the potential field should fulfill the Laplace equation 0=++=Δ zzyyxx WWWW  at 

each (free air) measurement point, the computed value of WΔ can be written as 
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At an arbitrary measurement point ),,( PPP zyxP  the computable data based on Eqs. (2)‒(10) 
are: 
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where 1−= zyx NNNM  is the number of coefficients of the series expansion, and  
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are known (computable) matrix elements at the Pth measurement point.  
The Pth element of the discrepancy vector of the measured and the computed data is: 
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The )(. P

zx
measW , )(. P
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xy
measW  and the )(. PmeasWΔ  in Eqs. (29)‒(32) are torsion balance 

measurements, )(. P
zz

measW  in Eq. (33) are vertical gradient data, )(. P
z

measW in Eq. (36) are gravity 
values measurable by gravimeters while )(. P

x
measW  in Eq. (34) and )(. P

y
measW  in Eq. (35) can be 

computed from vertical deflections. The first derivatives of the potential W from the vertical 
deflections are expressed as: 

 
xx UgW +−= ξ , (38) 

yy UgW +−= η , (39) 
 

where U is normal potential [9], g is gravity and ξ , η are components of the deflection of the 
vertical. Equation (37) is equivalent to the Laplace equation. 

Let our inverse problem be overdetermined and let the function to be minimized be the 2L  
norm of the discrepancy vector: 
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where sN  is the number of measurements. 

Let us introduce the following vector notations for measured and computed data: 
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All of the values of )(i
PnA  in Eqs. (20)−(28) can be written to a single coefficient matrix (to 

the so-called Jacobian): 
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and using Eqs. (11)−(19) the vector of computed data takes the form of 
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The discrepancy vector of measured and computed data is: 
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and substituting this into (40) one gets  
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for the norm, where 
=

=
9

1s
sNN , the total number of measurements. 

The solution of this inverse problem is based on the system of conditions 
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resulting in the set of normal equations 
 

dGGBG .measTT = . (48) 
 

Since this inverse problem is linear, the vector B of series expansion coefficients can be 
determined by solving the above set of equations, yielding 

 
( ) dGGGB .1 measTT −= . (49) 

 
So the potential function in this approximation − apart from an additive constant − and all 

of the first and second derivatives of this potential function (the elements of the full Eötvös 
tensor) can be determined not only at points of the region covered by measurements, but 
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anywhere in the surroundings of these measurement points using the coefficients of 
expansion in a series of a known set of basis function. 

 
 

4. Test computations 
To verify the 3D inversion algorithm, test computations were made at the south part of 
Csepel Island in Hungary, where gravity, torsion balance (TB) and vertical gradient (VG) 
measurements have been performed, furthermore vertical deflection data were available from 
a new model [12]. Torsion balance measurements were made here in 1950 and 30 new 
measurements were made in a denser net between the years 2006 and 2009, supplemented by 
gravity and vertical gradient observations (supported by en earlier OTKA project managed 
by G. Csapó [10] [11]). The location of the 4 earlier torsion balance measurement points is 
marked by squares, the 30 new measurement points are marked by circles and dots, while the 
21 gravity measurement points are marked by crosses in Figure 1. Vertical gradient data have 
been measured at 27 torsion balance stations, marked by dark dots in Figure 1. 
 

 
Figure 1 

Torsion balance stations (marked by squares, circles, and dots), gravity measurements 
(marked by crosses), and vertical gradient measurements (marked by black dots) within the 
test area. Components ξ andη of vertical deflections are known at each point from the Hirt 

model. 
 
Deflections of the vertical have been determined for all points in the test area by the Hirt 

model [12]. The GGMplus (Global Gravity Model plus) is constructed as a composite of 
data: 7 years of GRACE satellite data, 2 years of GOCE satellite, the EGM2008 global 
gravity model, 7.5 arc-sec SRTM topography and 30 arc-sec SRTM30_PLUS bathymetry 
data, and includes North-South and East-West ξ, η components of deflections of the vertical. 
On the left and right side of Figure 2 ξ and η components of deflections of the vertical can be 
seen, respectively, in the GRS80 system in the test area (the isoline interval is 0.05 arcsec). 

All the known horizontal gradients Wzx , Wzy , curvature data Wxy , WΔ , vertical gradients 
Wzz and gravity values g were used as input data, but only a part of the known vertical 
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deflection values were used as input data (as points for the training set) for the inversion; the 
remaining points (points of the validation set) were used for validating the computational 
results (15 points were considered for training, and 15 for the validation). 

Our gravity and VG measurements are exremely accurate, but unfortunately torsion 
balance measurements have less accuracy. Vertical deflections originated from the Hirt 
model [12] are available for each point, but it is important to emphasize that these are not 
real measurements – they do not contain the fine structure of the field, but are simply the 
results of a very accurate model computation. Taking this into consideration, different 
weights were applied for the input data: weights of the torsion balance measurements Wzx , 
Wzy , Wxy , WΔ and the vertical deflection data were chosen to be 1 while the weights of 
gravity and VG measurements were chosen to be 10, as was the weight of the Laplace 
equation. 

In our solution, by substituting the computed expansion coefficients Bi from Eq. (49) into 
the expansion formulas (1)−(9), the potential function of the gravity field and all of its first 
and second derivatives were computed for the whole test area. Comparing measured and 
computed data, we obtained practically the same horizontal gradients Wzx , Wzy , curvature 
data  Wxy , WΔ , vertical gradients Wzz and gravity values from the inversion as the input data 
of the measurements. 

 

  
Figure 2 

Vertical deflection components ξ and η within the test area from the Hirt model. 
Contour interval is 0.05 arcsec. 

 
The relatively high spatial variations of gradients points to the need for high polinomial 

order in the series expansion represenation of the potential field. Our experience shows 
(similarly to our previous work [5]) that care should be taken in choosing the polynomial 
order, because when increasing its value the condition number of the normal equation 
increases rapidly. This can make parameter estimation (coefficients B) unreliable, with high 
estimation errors and strong correlation between some coefficients. It was earlier found that P 
= 18–24 can give a good compromise between resolution and stability [5], − and for this 
study P=20 was applied in our computation.  



Geosciences and Engineering 

  8

From the 30 given vertical deflections 15 points were chosen as input data for the training 
set and  are marked in Figure 3 by crosses; the remaining 15 points of the validation set as 
control points are marked by triangles. Our computational results are summarized in Table 1, 
where point number of the control points and the EOV Y, X coordinates in [m] can be found 
in the first three columns; then computed and given ξ , η components of the vertical 
deflections with their )()( Hirtcomp ξξξ −=Δ  and )()( Hirtcomp ηηη −=Δ  differences can be found 
in the next six columns. Contour plots of Δξ and Δη differences can be seen in Figure 3 at the 
same time (the contour interval is 0.05 arcsec in the figure). 

 

  
Figure 3 

Differences between the computed vertical deflection components by inversion and the given 
ξ and η determined by the Hirt model within the test area. Points of training set are marked 
by crosses; points of validation set are marked by triangles. Contour interval is 0.05 arcsec.  

 
Table 1 

Differences between computed and given vertical deflection data at the validation points 

Point Y 
[m] 

X 
[m] 

ξ (comp.)
[arcsec] 

ξ (Hirt) 
[arcsec] 

Δξ 
[arcsec] 

η 
(comp.) 
[arcsec] 

η (Hirt) 
[arcsec] 

Δη 
[arcsec] 

31 641416.58 194729.93 0.79 1.40 -0.61 1.62 1.97 -0.35 
34 642016.12 194732.41 1.00 1.31 -0.31 1.41 1.90 -0.50 
36 642314.85 194730.44 1.70 1.30 0.41 1.47 1.85 -0.38 
44 642015.85 194433.08 1.32 1.41 -0.09 1.80 1.90 -0.10 
48 642615.88 194432.72 0.69 1.30 -0.61 1.91 1.86 0.05 
64 642013.94 194135.08 1.24 1.39 -0.16 2.08 1.89 0.19 
66 642313.68 194131.56 1.30 1.39 -0.09 1.87 1.90 -0.03 
69 642915.90 194132.69 -0.04 1.26 -1.30 2.04 1.80 0.24 
22 641716.60 195031.40 0.33 1.29 -0.96 1.62 1.89 -0.27 
45 642166.00 194433.00 1.41 1.37 0.04 1.87 1.90 -0.03 
54 642015.10 194284.80 1.34 1.40 -0.06 1.80 1.90 -0.10 
55 642165.00 194285.00 1.15 1.41 -0.26 1.78 1.90 -0.12 
65 642164.00 194132.70 1.26 1.40 -0.14 1.86 1.90 -0.04 
77 642464.00 193983.00 1.12 1.40 -0.28 1.71 1.90 -0.19 
67 642464.00 194133.00 1.38 1.40 -0.02 1.88 1.90 -0.02 
    RMS= ±0.36  RMS= ±0.16 
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Root mean square (RMS) values of the differences between the vertical deflection 

components computed by inversion and ξ and η determined by the Hirt model can be found 
in the last row of Table 1: 63.0)(RMS ′′±=Δξ  and 61.0)(RMS ′′±=Δη . The largest error can 
be seen at Point 69, which is at the eastern edge of the test area, the most unfavorable place 
for the computation (generally extrapolation is much more unfavorable than interpolation). If 
we mit Point 69, the RMS values of Δξ and Δη decrease significantly: 72.0)(RMS ′′±=Δξ , 

51.0)(RMS ′′±=Δη . 
These results are quite good, compared with the accuracy of the measured vertical 

deflections by the QDaedalus system [8], which is about 3.01.0 ′′−± . 
 

5. Conclusions 
Inversion reconstruction of 3D gravity potential has been carried out here based on gravity 
data, torsion balance and vertical gradient measurements, including vertical deflection data. 
Computations were performed for a test area where gravity, torsion balance, vertical gradient 
measurements and vertical deflection data were available. Using the coefficients of a series 
expansion of the gravity potential, both the first and the second derivatives of this potential 
were determined for the whole area by joint inversion. 

In this study we focused on how this inversion method can be applied to the 
determination of vertical deflections. It can be seen that vertical deflections can be computed 
by this inversion method with 3.01.0 ′′−±  accuracy in our test area, which is the same as the 
accuracy of the vertical deflections measured by the QDaedalus system. Thus we have a very 
good possibility to compute vertical deflections with suitable accuracy based on the large 
amount and good quality of gravity and gravity gradient data in Hungary. 
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7. List of symbols 

Symbol Description 
)(i

PnA  matrix elements at the Pth measurement point 

nB  coefficients of the series expansion 
d vector of computed data 
g gravity constant 
M number of coefficients of the series expansion 
N number of measurements 

),,( PPP zyxP  measurement point 
U normal potential 

),,( zyxW  gravity potential 
zxW , zyW  horizontal gradients 

zzW  vertical gradients 
ΔW , xyW  curvature data 

ε discrepancy vector of measured and computed data 
ξ , η components of the deflection of the vertical 

PΨΨΨ ,...,,. 21  set of basis function 
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