Acta Geod. Geoph. Hung., Vol. 40(2), pp. 147-157 (2005)
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In the 20th century more than 60000 torsion balance measurements were made in Hungary.
At present efforts are made to rescue the historical torsion balance data; today 24544 torsion
balance measurements are available for further processing in computer database. Previously
only the horizontal gradients of gravity were used by geophysicists, but there is a good
possibility in geodesy to interpolate deflections of the vertical, and to compute geoid heights
from curvature gradients of gravity.

First the theory of the interpolation method is discussed, than results of test computations
are presented. We have selected a test area where all kind of torsion balance measurements are
available at 249 points. There were 3 astrogeodetic points providing initial data for the interpo-
lation, and 10 checkpoints for controlling the results. The size of our test area is about 750 km?
and the average site distance of torsion balance data is 1.5 - 2 km. The standard deviations of
geoid height and deflection of the vertical differences at checkpoints were about +1-3 c¢cm, and
+0.6” respectively; which confirm that torsion balance measurements give good possibility to
compute very precise deflections of the vertical and local geoid heights at least for flat areas.

Keywords: Geoid determination, deflection of the vertical, Torsion balance measurements,
curvature gradients of gravity, inversion.

1. Fundamentals of the interpolation method

Let us consider distribution of deflections of the vertical in a small area where torsion balance
measurements are available. Let computations be referred to a Cartesian system, having an arbitrary
point P, within the examined area as origin. Let +x and +y be the axes of the system point to the
north and to the east, respectively, and let axis z coincide with vertical direction at P, so that its
positive branch points downwards.

Thereby, direction z at any point P; of the concerned area is parallel to the z-axis through point
P, , and the direction x; to the tangent of astronomical meridian through point P, , as illustrated by
the arbitrary point P; in Fig. 1. The z-axis at point P, being parallel to the vertical at origin Py ,

presumably, direction of vector g, at point P, does not coincide with direction z. In Fig.1. vector
ﬁ is, in fact, projection of vector g, on plane xz , while vector P,_H is projection of component
g, of vector g, on the same plane. (There are negligible differences between vectors ﬁ and g,
as well as E_H and g ).

Be @, the astronomical latitude of point F,, and let A®, symbolize the angle between direc-
tion PV and z atpoint P, , so the astronomical latitude of point P, is:

D, =D, + AP, .

While, according to Fig.1: —g , = g,sin 4@, ; it is to be written, for a small angle AQ, , as:
8xi

8i
The same can be written for the variation of astronomic longitude in plane yz to:

AD, =~

)
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Fig. 1. Coordinate system for the interpolation

Equations (1) and (2) yield components N and E of the angle between geoid normal at points F,
and P. Values A®, and AA, for F, and some P, may be determined in a similar way. These

may be applied for writing differences between P. and P, :

(A0, - AD,) = —(Q—QJ 3)
8 8
and
(AA, = AA)cos® = —(@—ﬁj 4)
& 8

where @ is the mean value of astronomical latitude between points P, and P,. By analogy with (1)
and (2), (3) and (4) yield components N and E of the angle included by level surface normal at P,
and P, .

By introducing notations g = aa—W =W, and g, = Ga_W =W, (W is the potential of Earth's real
X ’ y ’

gravity field), Eqs (3) and (4) may be written as:

ka Wxi
(AP, - AD,) = - - &)
8k 8
and
=~ (W W,
(44, — AN )cos D = - ————— (6)
& &i
respectively.

Level surfaces of the potential of normal gravity field, normal gravity, and directions of normal
gravity vectors, in this relation, geodetic latitude and longitude of any point, termed normal geodetic
latitude ,¢ and normal geodetic longitude , 1, may be interpreted on the analogy of the Earth's
real gravity field.

Relationships similar to (5) and (6) may be written between the variation of the gravity field di-
rection in normal gravity field, that is, of normal geodetic coordinates ,¢ and ,4 of points P, and

P, and the derivatives conform to potential of the normal gravity field (normal potential):
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ka Uxi
An ¢k _An ¢i =~ - (7)
Vi Vi
and
~ ka in
(4,4, =4, 4 )cos p = —2L -2 ®)
Vi Vi

where U is the normal potential, and y; , y, are the values of normal gravity at points P, and P, .
Let us subtract Eqs (5) and (7), as well as (6) and (8) from each other:

Wx Wxi Ux Uxi
(40, -,0,)-(40,-1,9)~-{ o2t | x| o)
8 & Vi Vi
W W . U U .
AN, —A A, )= (AN, —A A ) cosp = —2 - 2L || 2 2ol (10)
k n’vk i n’%i
8k 8 Yk Vi

By definition, differences (9) and (10) between astronomic and normal geodetic latitudes and
longitudes yield differences of components & and 7 of deflection of the vertical between points

P and P,:
W‘ck ka Wxi Uxi
S¢S =- - + - (11)
& Vi 8i Vi
/8 U w. U.
M 1 =_{_’k__y"J+[i_l]' (12)
8k Vi 8 Vi

Inside a limited area of size 0.5° x 0.5°, approximations 7 =g and &=, = ¢ are permissible
— and so are single values g and ¢ valid for all the area rather than between two neighboring
points alone (Selényi 1953, Badekas and Mueller 1967) to be indicated simply by g and ¢ . Intro-
ducing notations

AW =W -U (13)

leads to equations:
glé—&)=-aW  +aw,, (14)
g(ﬂk _771'): AW, + AW, . (15)

Remind that in classic geodesy, deflection of the vertical is frequently interpreted as:
=@-¢
n=(A-A)cosp
where @ and A are astronomic coordinates, while ¢ and A are geodetic (ellipsoidal) coordinates of
point.

By physically interpreting the ellipsoid, serving as reference surface, as one level surface of the
normal gravity field, than ellipsoidal and normal geodetic coordinates are related as ¢=, ¢ — x and

A=,4 (x is the difference of directions of the normal gravity field between point P on the earth

surface and the ellipsoid surface along the normal plumb line at point P). The mentioned 0.5 x

0.5° area, variation of & is practically negligible (Magnitzki and Brovar 1964). Hence, (11) and
(12) are also valid for the classical geodetic interpretation of deflection of the vertical. Thus, in the
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following, when interpreting of deflection of the vertical it is needless to distinguish between the
two conceptions, permitting to use the concept of deflection of the vertical in both interpretations.

Components of deflections of the vertical - more closely, their values multiplied by g, that is,
horizontal components - seemed to be determined by first derivatives of the potential. While torsion
balance measurements yield second derivatives

2 2 2
AZ@VZ_@VE/ and Ww:aW
oy Ox © OxOy

Thus, the computation problem is essentially an integration to be solved by approximation.

Fig. 2. x, y — n, s coordinate transformation

To this aim, first the coordinate transformation in Fig.2 will be performed, according to
n cosa, sina, || x
s| |-sine, cosa, ||y

W _ W Wy

Accordingly:

W, = =— =W, cosa,; +W, sina,
on Ox On 0Oy On ’
(16)
= W _ W &x +8—W@ =-W sina, +W cosa,
Os Ox O0s 0Oy Os ’ ’
while the second derivative:
2 2 2 2
ow_s Wc 20, +l 0 Vf—a—VQV sin2a,, a7
Onds  Ox0Oy oy Ox

2

. ow . .
This latter W, = o seems to result from torsion balance measurements, with the knowledge of
nos

azimuth «, ofthe direction connecting the two points examined.
Now, by integrating the left-hand side of (17) between limits », and n,:

Nk oo
ow n:[aWj _(aw] W, W, (18)
= Onds os ), \Os ), ‘

If points P and P, are close enough to let variation of second derivative W, be considered as
linear, then integral (18) may be computed by trapezoid integral approximation formula:

nk

o'w 1|(o°w o'W 1
e e A RSN S

nj
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where n, =n, —n, is the distance between points P, and P,. On the other hand, by applying
transformation (16), integral (18) yields:

Wy =W, == =W, sina, +(W, - W, Jcosa, . (20)
Similar expression can be written for the potential U of normal gravity field:

U,-U, =-U, -U,kina, +{U,, U, Josa, . 1)
Subtracting (21) from (20) yields variation G, = g49, of horizontal force component between
points P, and P, in direction n. By taking (13) into consideration:

Gy =AW, +aw, Jsina, —(-aW,, + AW, )cosa,
after substituting (14) and (15):
Gy = g('gk -9 )'9ik = g(ék -$ )sin Oy — g(’?k =1 )COS Oy, (22)

The left-hand side of (22) may be computed by using (19). When using notation (13):

G, =5 [am,) +(am,),]n, (3

with AW, to be computed from (17):

ns

AW, = AW ;sin2a, + AW, cos2a, 24)

X

where AW, =W,-U, and AW =W, -U, . Remind that W, and W, are curvature gradi-

ents obtainable from torsion balance measurements, while U, and U, are curvature gradients of
the normal gravity field. U, =10.26cos’ ¢ and U, =0 referred to the GRS-80 in E6tvds Unit
(1 Eotvos Unit=1E = 107s7%), (Torge 1989). Now, by substituting (24) into (23):

n, .
G, = Tk [(AWA,- +AW,, )sm 20 + (AWW. +AW,, )cos 2a, ] (25)
which, compared to (22) yields the basic equation, relating the variation of components of deflec-
tions of the vertical between two points to curvature gradients from torsion balance measurements:

(é:k -< )Sin Ay — (’7k =7 )COS Oy =

n, . . (26)

—\AW . + AW, Jsin2a, +\AW_ + AW |cos2a,

4g i k Vi XYk
Based on (26) there are 2n unknowns in case of an arbitrary interpolation net of # points. E.g. in

case of a simple triangulation chain the » points form n-2 triangles with 2n-3 triangle sides; so there
are 2n-3 equations for the 2n unknowns. For unambiguous solution further information are required
(Volgyesi 1993, 1995). Two or more fixed points are needed where the deflections of the vertical
are given.

2 Computation of geoid heights from deflections of the vertical

The basic principle of astronomical levelling gives us a definite mathematical relationship be-
tween geoid undulations and deflections of the vertical (Volgyesi 2001b). According to the nota-
tions of Fig. 3 we get

dN = 9ds
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where 4 is the Pizzetti-type deflection of the vertical in the azimuth o. Between any points P. and
P, the geoid height change is

AN, = I 9(s)ds 7

where 9(s) is the function of deflection of the vertical in the azimuth ¢, , and s is the distance
between the two points (Bir6o 1985).

Fig. 3. Basic principle of astronomical levelling

If P and P, are close together and J(s) is a linear function between these points the integral
(27) can be evaluated by a numerical integration (Volgyesi 1998, Toth Gy, Volgyesi L 2002):

N, —N, =[%cosaik +L277"sin aikjs,k (28)

because of 9=~ cosa+nsina . Using the original torsion balance points directly for the geoid

computation instead of regular grid points is advantageous (Volgyesi 2001b). For an unambiguous
solution one or more fixed points are needed where the initial geoid heights are given.

3 Torsion balance measurements

In the 20th century more than 60000 torsion balance measurements were made in Hungary
(Szabo, 1999). Generally only the horizontal gradients of gravity ., and W, were developed for

the purposes of geophysical prospecting, and the curvature values W, and W,,, which are very

important for geodetic purposes, were left unprocessed. Unfortunately a small part of field books of
torsion balance measurements were lost up to now, but the main part of measurements is still
available (Volgyesi, 2001a). At present time serious efforts are going on for rescuing the historical
torsion balance measurements, researchers of ELGI are creating the data of old field books to
computer database. At present 24544 torsion balance measurements are available for further
processing in computer database. Location of these torsion balance points can be seen on Fig. 4.

The name of the torsion balance station, measurement year, geographical latitude o,
geographical longitude A, horizontal and curvature values W W, ., Wy, 2W,, and terrain

zx zy
reductions of these gradients are stored in the database for each station.

Test computations were performed in an area extending over some 750 km* (a rectangle shows
the position of this test area in Fig. 4) and well measured by torsion balance, where both topographic
conditions and the density of torsion balance measurements and astrogeodetic stations reflects
average conditions in Hungary; and there was a possibility to check calculations because
astrogeodetic and astrogravimetric data were available. In Figs. 5 and 6 curvature gradients W,

and 2W¥,, measured by torsion balance are visualized in the test area.
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Fig. 4. Location of 24544 torsion balance points having been developed to computer database till now
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Fig. 5. Isoline map of curvature data ¥, on the test area
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Fig. 6. Isoline map of curvature data 2 on the test area

4 Test computations

Software was developed for computations which can be used to determine deflections of the vertical
and geoid undulations. Input-output window of this FuggoOrt software can be seen in Fig. 7.
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Fig. 7. Input-output window of the interpolation software
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Fig. 8. Isoline map of £ component of interpolated deflections of the vertical
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Fig. 9. Isoline map of 7 component of interpolated deflections of the vertical
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Test computations were performed in the test area extending over about 750 km” . There are 248
torsion balance stations, and 13 points (3 astrogeodetic, and 10 astrogravimetric points) among them
where £, 77and N values are known referring to the GRS80 system. The 3 astrogeodetic points indi-
cated with squares in Figs. 8, 9 and 10 were used as initial (fixed) points of interpolations and the 10
astrogravimetric points indicated with triangles in Figs. 8, 9 and 10 were used for checking of com-
putations.

The interpolation network has 248 points in all and 245 of these are points with unknown deflec-
tions. Since there are two unknown components of deflection of the vertical at each point there are
498 unknowns for which 681 equations can be written.

Isoline maps of interpolated £ and 77 components of deflections of the vertical can be seen in
Figs. 8 and 9. Standard deviations computed at checkpoints are: m, =+0.60" and m, =+0.65".

Based on the computed deflection of the vertical components, using Eq (28) geoid computations

were carried out. The deternined geoid map can be seen in Fig. 10. Geoid height differences com-
puted at checkpoints are about + 1-3 cm.

1237 1236
.

125 1137 1256

670000 675000
Fig. 10. Isoline map of geoid undulations

5 Inversion reconstruction of gravity potential

Further investigation is started for the inversion reconstruction of gravity potential based on torsion
balance measurements. This method gives an additional possibility to determine deflections of the
vertical based on torsion balance measurements. Based on the preliminary investigations accuracy
of this method may be better than the accuracy of the former interpolation methods, and it is possi-
ble to avoid some types of earlier interpolation problems, like e.g. accuracy dependence of the geo-
metrical configuration of the interpolation net (Volgyesi, 1995).

Based on the experimental computations by synthetic data, inversion algorithm seems to be re-
markably stable (Dobroka, Volgyesi 2005). This method gives possibility to determine the potential
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function by a common inversion using both torsion balance measurements and deflections of the
vertical data at a few given points. Many important features of the gravity field (e.g. deflections of
the vertical at the unknown points) can be determined from this reconstructed potential function.

Summary

Our test computations confirm the fact that for large and more or less flat territories deflections of
the vertical and geoid heights of acceptable accuracy can be computed from torsion balance meas-
urements. Reliability of interpolated deflection of the vertical and geoid height values are about
10.6” and + 1-3 cm respectively. In the next future waiting for the very precise measurements of the
promising new modern gradiometers our method and software are ready for use to evaluate these
further measurements.
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