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In the 20th century more than 60000 torsion balance measurements were made in Hungary. 
At present efforts are made to rescue the historical torsion balance data; today 24544 torsion 
balance measurements are available for further processing in computer database. Previously 
only the horizontal gradients of gravity were used by geophysicists, but there is a good 
possibility in geodesy to interpolate deflections of the vertical, and to compute geoid heights 
from curvature gradients of gravity. 

First the theory of the interpolation method is discussed, than results of test computations 
are presented. We have selected a test area where all kind of torsion balance measurements are 
available at 249 points. There were 3 astrogeodetic points providing initial data for the interpo-
lation, and 10 checkpoints for controlling the results. The size of our test area is about 750 km2 
and the average site distance of torsion balance data is 1.5 - 2 km. The standard deviations of 
geoid height and deflection of the vertical differences at checkpoints were about ±1-3 cm, and 
±0.6” respectively; which confirm that torsion balance measurements give good possibility to 
compute very precise deflections of the vertical and local geoid heights at least for flat areas. 

Keywords: Geoid determination, deflection of the vertical, Torsion balance measurements, 
curvature gradients of gravity, inversion. 

1. Fundamentals of the interpolation method 

Let us consider distribution of deflections of the vertical in a small area where torsion balance 
measurements are available. Let computations be referred to a Cartesian system, having an arbitrary 
point P0 within the examined area as origin. Let +x and +y be the axes of the system point to the 
north and to the east, respectively, and let axis z coincide with vertical direction at P0 so that its 
positive branch points downwards. 

Thereby, direction  z  at any point  Pi of the concerned area is parallel to the  z-axis through point  
P0 , and the direction  xi  to the tangent of astronomical meridian through point  P0 , as illustrated by 
the arbitrary point  Pi  in Fig. 1. The z-axis at point iP  being parallel to the vertical at origin P0 , 
presumably, direction of vector ig  at point iP  does not coincide with direction z. In Fig.1. vector 

VPi  is, in fact, projection of vector ig  on plane  xz , while vector HPi  is projection of component 

ixg  of vector ig  on the same plane. (There are negligible differences between vectors VPi  and ig   

as well as HPi  and ixg ). 
Be 0Φ  the astronomical latitude of point 0P , and let i∆Φ  symbolize the angle between direc-

tion  VPi  and  z  at point  iP  , so the astronomical latitude of point  iP   is: 

ii ∆ΦΦΦ += 0 . 

While, according to Fig.1: iiix gg ∆Φsin=− ;  it is to be written, for a small angle i∆Φ  , as: 

i

ix
i g

g
−=∆Φ . (1) 

The same can be written for the variation of astronomic longitude in plane  yz  to: 
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i

iy
ii g

g
=Φ∆Λ cos . (2) 

 
Fig. 1. Coordinate system for the interpolation 

Equations (1) and (2) yield components N and E of the angle between geoid normal at points 0P  
and iP . Values k∆Φ  and k∆Λ  for 0P  and some kP  may be determined in a similar way. These 
may be applied for writing differences between iP  and kP : 
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where Φ~  is the mean value of astronomical latitude between points iP  and kP . By analogy with (1) 
and (2), (3) and (4) yield components  N  and  E  of the angle included by level surface normal at iP  
and kP  . 

By introducing notations  xx W
x

Wg =
∂
∂

=   and  yy W
y

Wg =
∂
∂

=  (W is the potential of Earth's real 

gravity field), Eqs (3) and (4) may be written as: 
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respectively. 
Level surfaces of the potential of normal gravity field, normal gravity, and directions of normal 

gravity vectors, in this relation, geodetic latitude and longitude of any point, termed normal geodetic 
latitude ϕn  and normal geodetic longitude λn , may be interpreted on the analogy of the Earth's 
real gravity field. 

Relationships similar to (5) and (6) may be written between the variation of the gravity field di-
rection in normal gravity field, that is, of normal geodetic coordinates ϕn  and λn  of points iP  and 

kP ,  and the derivatives conform to potential of the normal gravity field (normal potential): 
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where U is the normal potential, and iγ  , kγ  are the values of normal gravity at points iP  and kP  . 
Let us subtract Eqs (5) and (7), as well as (6) and (8) from each other: 
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By definition, differences (9) and (10) between astronomic and normal geodetic latitudes and 
longitudes yield differences of components  ξ   and  η   of deflection of the vertical between points 

iP  and kP : 
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Inside a limited area of size  0.5o ×  0.5o, approximations g~~ =γ  and ϕϕΦ ~~~
==n  are permissible 

− and so are single values g~  and ϕ~  valid for all the area rather than between two neighboring 
points alone (Selényi 1953, Badekas and Mueller 1967) to be indicated simply by g and ϕ . Intro-
ducing notations 

UWW −=∆  (13) 
leads to equations: 
 ( ) ixkxik WWg ∆∆ξξ +−=−  , (14) 

 ( ) iykyik WWg ∆∆ηη +−=−  . (15) 

Remind that in classic geodesy, deflection of the vertical is frequently interpreted as: 

ϕΦξ −=  

ϕλΛη cos)( −=  

where Φ and Λ are astronomic coordinates, while ϕ and λ are geodetic (ellipsoidal) coordinates of 
point. 

By physically interpreting the ellipsoid, serving as reference surface, as one level surface of the 
normal gravity field, than ellipsoidal and normal geodetic coordinates are related as κϕϕ −=n and 

λλ n=  (κ is the difference of directions of the normal gravity field between point P on the earth 
surface and the ellipsoid surface along the normal plumb line at point P). The mentioned  0.5o ×  
0.5o  area, variation of  κ  is practically negligible (Magnitzki and Brovar 1964). Hence, (11) and 
(12) are also valid for the classical geodetic interpretation of deflection of the vertical. Thus, in the 
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following, when interpreting of deflection of the vertical it is needless to distinguish between the 
two conceptions, permitting to use the concept of deflection of the vertical in both interpretations. 

Components of deflections of the vertical - more closely, their values multiplied by  g , that is, 
horizontal components - seemed to be determined by first derivatives of the potential. While torsion 
balance measurements yield second derivatives 

2

2

2

2

x
W

y
WW

∂
∂

−
∂
∂

=∆  and 
yx

WWxy ∂∂
∂

=
2

   . 

Thus, the computation problem is essentially an integration to be solved by approximation. 

 
Fig. 2. x, y  →  n, s coordinate transformation 

 
To this aim, first the coordinate transformation in Fig.2 will be performed, according to 
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 seems to result from torsion balance measurements, with the knowledge of 

azimuth  ikα   of the direction connecting the two points examined. 
Now, by integrating the left-hand side of (17) between limits in  and kn : 
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If points iP  and kP  are close enough to let variation of second derivative nsW  be considered as 
linear, then integral (18) may be computed by trapezoid integral approximation formula: 
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where  ikik nnn −=   is the distance between points iP  and kP . On the other hand, by applying 
transformation (16), integral (18) yields: 

 ( ) ( ) ikiykyikixkxisks WWWWWW αα cossin −+−−=−  . (20) 

Similar expression can be written for the potential U of normal gravity field: 

 ( ) ( ) ikiykyikixkxisks UUUUUU αα cossin −+−−=−  . (21) 

Subtracting (21) from (20) yields variation ikik gG ϑ∆=  of horizontal force component between 
points iP  and kP  in direction  n. By taking (13) into consideration: 

( ) ( ) ikiykyikixkxik WWWWG α∆∆α∆∆ cossin +−−+−=  

after substituting (14) and (15): 

 ( ) ( ) ( ) ikikikikikikik gggG αηηαξξϑϑϑ cossin −−−=−=  (22) 

The left-hand side of (22) may be computed by using (19). When using notation (13): 

 ( ) ( )[ ] ikknsinsik nWWG ∆∆ +=
2
1  (23) 

with nsW∆  to be computed from (17): 

 ikxyikns WWW α∆α∆∆ ∆ 2cos2sin +=  (24) 

where  ∆∆∆∆ UWW −=   and  xyxyxy UWW −=∆ . Remind that ∆W  and xyW  are curvature gradi-
ents obtainable from torsion balance measurements, while ∆U  and xyU  are curvature gradients of 

the normal gravity field.  ϕ∆
2cos26.10=U   and  0=xyU   referred to the GRS-80 in Eötvös Unit         

(1 Eötvös Unit = 1E = 2910 −− s ), (Torge 1989). Now, by substituting (24) into (23): 

 ( ) ( )[ ]ikkxyixyikki
ik

ik WWWWnG α∆∆α∆∆ ∆∆ 2cos2sin
4

+++=  (25) 

which, compared to (22) yields the basic equation, relating the variation of components of deflec-
tions of the vertical between two points to curvature gradients from torsion balance measurements: 

 
( ) ( )

( ) ( )[ ]ikkxyixyikki
ik

ikikikik

WWWW
g
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α∆∆α∆∆

αηηαξξ

∆∆ 2cos2sin
4

cossin

+++

=−−−
 . (26) 

Based on (26) there are 2n unknowns in case of an arbitrary interpolation net of n points. E.g. in 
case of a simple triangulation chain the n points form n-2 triangles with 2n-3 triangle sides; so there 
are 2n-3 equations for the 2n unknowns. For unambiguous solution further information are required 
(Völgyesi 1993, 1995). Two or more fixed points are needed where the deflections of the vertical 
are given. 

2 Computation of geoid heights from deflections of the vertical 

The basic principle of astronomical levelling gives us a definite mathematical relationship be-
tween geoid undulations and deflections of the vertical (Völgyesi 2001b). According to the nota-
tions of Fig. 3 we get 

dsdN ϑ=  
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where ϑ is the Pizzetti-type deflection of the vertical in the azimuth α. Between any points iP  and  

kP  the geoid height change is 

 dssN
k

i

ik ∫= )(ϑ∆  (27) 

where )(sϑ  is the function of deflection of the vertical in the azimuth ikα , and s is the distance 
between the two points (Biró 1985). 

 
Fig. 3. Basic principle of astronomical levelling 

 
If  iP   and  kP   are close together and )(sϑ  is a linear function between these points the integral 

(27) can be evaluated by a numerical integration (Völgyesi 1998, Tóth Gy, Völgyesi L 2002): 

 ikik
ki

ik
ki
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+
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2
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because of αηαξϑ sincos += . Using the original torsion balance points directly for the geoid 
computation instead of regular grid points is advantageous (Völgyesi 2001b). For an unambiguous 
solution one or more fixed points are needed where the initial geoid heights are given. 

3 Torsion balance measurements 

In the 20th century more than 60000 torsion balance measurements were made in Hungary 
(Szabó, 1999). Generally only the horizontal gradients of gravity zxW  and zyW  were developed for 

the purposes of geophysical prospecting, and the curvature values  ∆W  and xyW , which are very 
important for geodetic purposes, were left unprocessed. Unfortunately a small part of field books of 
torsion balance measurements were lost up to now, but the main part of measurements is still 
available (Völgyesi, 2001a). At present time serious efforts are going on for rescuing the historical 
torsion balance measurements, researchers of ELGI are creating the data of old field books to 
computer database. At present 24544 torsion balance measurements are available for further 
processing in computer database. Location of these torsion balance points can be seen on Fig. 4. 

The name of the torsion balance station, measurement year, geographical latitude ϕ, 
geographical longitude λ, horizontal and curvature values zxW  , zyW  , ∆W  , xyW2

 
and terrain 

reductions of these gradients are stored in the database for each station. 
Test computations were performed in an area extending over some  750 2km  (a rectangle shows 

the position of this test area in Fig. 4) and well measured by torsion balance, where both topographic 
conditions and the density of torsion balance measurements and astrogeodetic stations reflects 
average conditions in Hungary; and there was a possibility to check calculations because 
astrogeodetic and astrogravimetric data were available. In Figs. 5 and 6  curvature gradients  ∆W   
and  xyW2   measured by torsion balance are visualized in the test area. 
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Fig. 4. Location of 24544 torsion balance points having been developed to computer database till now 
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Fig. 5. Isoline map of curvature data ∆W  on the test area 
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Fig. 6. Isoline map of curvature data xyW2  on the test area 

4 Test computations 

Software was developed for computations which can be used to determine deflections of the vertical 
and geoid undulations. Input-output window of this FuggoOrt software can be seen in Fig. 7. 
 

 
Fig. 7. Input-output window of the interpolation software 
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Fig. 8. Isoline map of ξ component of interpolated deflections of the vertical 
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Fig. 9. Isoline map of η component of interpolated deflections of the vertical 
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Test computations were performed in the test area extending over about 750 2km . There are 248 
torsion balance stations, and 13 points (3 astrogeodetic, and 10 astrogravimetric points) among them 
where ξ , η and N values are known referring to the GRS80 system. The 3 astrogeodetic points indi-
cated with squares in Figs. 8, 9 and 10 were used as initial (fixed) points of interpolations and the 10 
astrogravimetric points indicated with triangles in Figs. 8, 9 and 10 were used for checking of com-
putations. 

The interpolation network has 248 points in all and 245 of these are points with unknown deflec-
tions. Since there are two unknown components of deflection of the vertical at each point there are 
498 unknowns for which 681 equations can be written. 

Isoline maps of interpolated ξ and η components of deflections of the vertical can be seen in 
Figs. 8 and 9. Standard deviations computed at checkpoints are: 06.0 ′′±=ξm  and 56.0 ′′±=ηm . 

Based on the computed deflection of the vertical components, using Eq (28) geoid computations 
were carried out. The deternined geoid map can be seen in Fig. 10. Geoid height differences com-
puted at checkpoints are about ± 1-3 cm.  
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Fig. 10. Isoline map of geoid undulations 

 

5 Inversion reconstruction of gravity potential 

Further investigation is started for the inversion reconstruction of gravity potential based on torsion 
balance measurements. This method gives an additional possibility to determine deflections of the 
vertical based on torsion balance measurements. Based on the preliminary investigations accuracy 
of this method may be better than the accuracy of the former interpolation methods, and it is possi-
ble to avoid some types of earlier interpolation problems, like e.g. accuracy dependence of the geo-
metrical configuration of the interpolation net (Völgyesi, 1995).  

Based on the experimental computations by synthetic data, inversion algorithm seems to be re-
markably stable (Dobróka, Völgyesi 2005). This method gives possibility to determine the potential 
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function by a common inversion using both torsion balance measurements and deflections of the 
vertical data at a few given points. Many important features of the gravity field (e.g. deflections of 
the vertical at the unknown points) can be determined from this reconstructed potential function.  
 

Summary 

Our test computations confirm the fact that for large and more or less flat territories deflections of 
the vertical and geoid heights of acceptable accuracy can be computed from torsion balance meas-
urements. Reliability of interpolated deflection of the vertical and geoid height values are about 
±0.6” and ± 1-3 cm respectively. In the next future waiting for the very precise measurements of the 
promising new modern gradiometers our method and software are ready for use to evaluate these 
further measurements. 
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