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Abstract
Modern computing systems, likeMathematica, are blending numeric and symbolic evaluation of many algorithms

improving their efficiencies (time, accuracy). In this contribution three toy-examples of the application of hybrid

symbolic-numeric computations in geosciences are presented in order to illustrate the features of this advanced

technique, namely: ranging GNSS satellites, computing GNSS cycle ambiguities and employing symbolic

regression for verifying Kepler’s third law.

1 Introduction

Hybrid symbolic-numeric computation (HSNC) is a

large and growing area at the boundary of mathematics

and computer science, devoted to the study and imple-

mentation of methods that mix symbolic with numeric

computation.

The ideal computational systems for hybrid methods

are able to carry out numeric algorithms with any arith-

metic precision as well as algorithms with any sym-

bolic objects (rational numbers, symbolic variables

without assigned numeric values or other mathematical

objects i. e. digital images). Maple and Mathematica

mention only the flagships of such systems.

Mixed-integer programming (wherein some variables

are discrete-valued and others continuous) is also a nat-

ural area for HSNC since it combines aspects of exact

and numeric methods in the handling of both discrete

and continuous variables.

Symbolic Regression, a methodology that blends nu-

merics with evolutionary programming, introduced for

the purpose of modeling data can be similarly consid-

ered as a natural part of HSNC.

This paper provides three geodetic examples illustrat-

ing the strengths of these techniques. However in our

new book Awange et al. (2018) many other areas of

HSNC are discussed with geodetic applications.

2 Numeric versus symbolic solution

Plainly speaking, a numeric (or numerical) method

is one that could be done with a simple hand-held

calculator, using basic arithmetic, square roots, some

trigonometric functions, and a few other functions that

most people learn about in high school. Depending on

the task, one may have to press the calculator’s buttons

thousands (or even millions) of times, but theoretically

a person with a calculator and some paper could im-

plement a numerical method. When finished, the paper

would be full of arithmetic.

A symbolic method involves algebra. It is a method

that, if implemented by a person, it would involve al-
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gebraic or higher rational thought. A person imple-

menting a symbolic method will rarely need to reach

for a calculator. When finished, there may be some

numbers, but the paper would be full of variables such

as x,y,z.

Numeric computations:

• usually require initial values and iterations. They

are sensitive to round off errors, provide only one

local solution,

• can be employed for complex problems, and the

computation times are short in general because the

steps usually translate directly into computer ma-

chine language.

Symbolic computations:

• do not require initial values and iterations. They

are not sensitive to round-off errors, and provide all

solutions,

• often cannot be employed for complex problems,

and the computation time is long in general because

the steps usually require computer algebra system

software.

3 Hybrid solution

Symbolic methods may be hard to develop, and they

may be difficult for a computer to implement, but they

lead to insight. Fortunately, we are not forced into a

strict either/or dichotomy. There are symbolic-numeric

methods, hybrids using the strengths of both ideas.

Ideally the best strategy is to divide the algorithm into

symbolic and numeric parts in order to utilize the ad-

vantages of both techniques. Inevitably, numeric com-

putations will always be used to a certain extent. So

using symbolic forms, the computation time can be re-

duced considerably. This so-called hybrid computation

has an additional advantage too, namely the symbolic

part of the algorithm does not generate round-off er-

rors.

Another approach of applying the hybrid computation

is to merge symbolic evaluation with numeric algo-

rithm. For example numeric Runge-Kutta algorithms

can be carried out with symbolic variable (s) to solve

boundary value problems without iteration.

4 Geodetic applications

4.1 Ranging to more than four
GNSS satellites

Throughout history, position determination has been

one of the most important tasks of mountaineers, pi-

lots, sailor, civil engineers etc. In modern times,

Global Navigation Satellite Systems (GNSS; a collec-

tion of the US based GPS, Russian GLONASS, Chi-

nese Beidou and the European Galileo; e.g., Awange

(2012, 2018)) provide an ultimate method to accom-

plish this task. If one has a hand held GNSS receiver,

which measures the travel time of the signal transmit-

ted from the satellites, the distance travelled by the

signal from the satellites to the receiver can be com-

puted by multiplying the measured time by the speed

of light in vacuum. The distance of the receiver from

the i-th GNSS satellite, the pseudo-range observations,

di is related to the unknown position of the receiver,

{x1,x2,x3} by

di =
√
(x1−ai)2+(x2−bi)2+(x3− ci)2+x4 , (4.1)

where {ai,bi,ci}; i = 0,1,2, ...,n > 3 are the coordi-

nates of the i-th satellite.

The distance is influenced also by the satellite and re-

ceiver’ clock biases. The satellite clock bias can be

modeled while the receiver’ clock bias has to be con-

sidered as an unknown variable, x4. This means, we

have four unknowns, consequently we need four satel-

lites to provide a minimum observation. The general

form of the equation for the i-th satellite is

fi = (x1−ai)2+(x2−bi)2+(x3− ci)2

− (x4−di)2 .
(4.2)

The system can be solved in many ways (see Awange

et al., 2010; Awange and Paláncz, 2016). However in

general there are two steps of the solution:

1) compute approximate solution using Gauss-Jacobi

method employing Gröbner basis for every subset

of size four,

2) then improving the result with local minimization

of the sum of square of errors of the equation.

Employing hybrid numeric symbolic computation one

can improve the efficiency of the algorithm in both

phases. We shall illustrate the hybrid solution with a

12
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small numeric example based on the data in Awange

and Paláncz (2016, see Table 15.2 on page 293.).

In the first step, to compute an approximate solution,

the Gröbner basis with inexact coefficients can be em-

ployed. Computing Gröbner bases with inexact coef-

ficients is often desired in industrial applications, but

the computation with floating-point numbers is quite

unstable if performed naively (Sasaki, 2014). The so-

lution methods of the Gröbner basis are very sensitive

to round-off error, therefore sometimes in case of sys-

tems that are over-constrained or have roots with mul-

tiplicities, and are given with inexact coefficients, hy-

brid symbolic-numeric methods are required. Recently

Szanto (2011) and Lichtblau (2013) discussed compu-

tation of Gröbner bases using approximate arithmetic

for coefficients and showed how certain considerations

of tolerance, corresponding roughly to accuracy and

precision from numeric computation, allow us to ob-

tain good approximate solutions to problems that are

overdetermined.

Let us consider the list of equations eqs = fi with

the numerical data for fi, i= {0,1, . . . ,5}, and employ

Gröbner basis with inexact coefficients, we get the ap-

proximate solution employingMathematica

AbsoluteTiming[grb = GroebnerBasis[eqs,

{x1app,x2app,x3app,x4app },Tolerance→10-3]]

{0.00596268,{1.x4app,-4.08821×106+1.x3app,
4.84782×106+1.x2app,-596925.+1.x1app}} .

This result can be used in the second step, to improve

the result. The error to be minimized is

R=
5

∑
i=0

f 2i . (4.3)

For local minimization Newton method can be em-

ployed, since it has quadratic convergency. We can

reduce the computation time to half if the gradient

(GradS) and Hessian matrix (HessianS) are pre-

computed symbolically instead of computing them

numerically in every iteration step

AbsoluteTiming[

FindMinimum[f,{{x1,x1app},{x2,x2app},

{x3,x3app},{x4,x4app }},Gradient→GradS,

Method→{"Newton", Hessian→HessianS]]

{0.00330805, {2.21338×1018,

{x1 → 596929.,x2 → -4847845.,

x3 → 408822×106, x4 →13.4524}}}.

4.2 GNSS cycle ambiguities

Highly accurate static GNSS positioning in surveying

is achieved by the processing of relative phase ranges

observed to the visible GNSS satellites at both the ref-

erence and the rover stations. To eliminate the time-

dependent error sources such as the satellite and re-

ceiver clock error, the double differenced phase obser-

vations are formed and they are adjusted using a least

squares adjustment. An alternative technique is to use

extended Kalman-filtering for this purpose.

The observation equation of the double differenced

phase observations has the following form:

ΔΔΦ jk
AB = a1δxB+a2δyB+a3δzB+λN jkAB (4.4)

where ΔΔΦ jk
AB is the double differences phase observa-

tions taken to the j-th and k-th satellite, δxB,δyB,δzB
are the relative coordinate differences between the ref-

erence (A) and rover (B) stations, λ is the wavelength

of the signal, N jkAB is the double differenced phase am-

biguity and j is the so-called pivot satellite, that is used

as a reference for forming the double differences.

Let us assume that five satellites are measured concur-

rently on both the reference and the rover stations in

two consecutive epochs. Since one satellite is used as

a pivot satellite, four double differences are formed in

each epoch. This means that altogether 8 observation

equations are formed, which can be used to evaluate

7 unknowns (3 coordinate differences and 4 double-

differenced phase ambiguities). A usual solution of

the problem is to estimate the unknowns using a least-

squares adjustment, which provides a ‘float’ solution

of the integer phase ambiguities. Consequently the

computation of the integer least-squares estimates of

the GNSS cycle ambiguities reduces to a integer least-

squares problem (see Teunissen, 1995, 2012; Gra-

farend, 2003).

The mixed integer programming problem can be for-

mulated as follows,

(y−Ax−Bz)TQ−1(y−Ax−Bz)→min
x,z

, (4.5)
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where y,A,B and Q are known real vector and matri-

ces, while x and z are integer unknown vectors, respec-

tively,

x ∈ R and z ∈ Z .

Let us consider the actual values of the input arrays as

y=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2.883

3.020

2.586

4.405

2.922

3.121

2.663

4.267

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

A=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.25 0.20 0.45

−0.30 0.42 0.56

−0.34 −0.20 0.78

0.22 0.54 0.33

0.28 0.23 0.40

−0.31 0.47 0.60

−0.31 −0.22 0.87

0.20 0.48 0.30

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

;

B=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Q = IdentityMatrix[8];

Now, in order to convert the problem to pure integer

programming, three new integer variables for elimina-

tion of the real unknown will be introduced as,

ξ1 = 100x1,ξ2 = 100x2,ξ3 = 100x3 .

So the real solutions for xi will be considered to two

decimal digits accuracy (cm). Let us rationalize the

input arrays

{yR,QR,AR,BR} = Rationalize[{y,Q,A,B}]

{{

⎧⎨
⎩
2883

1000

⎫⎬
⎭,
⎧⎨
⎩
151

50

⎫⎬
⎭,
⎧⎨
⎩
1293

500

⎫⎬
⎭,
⎧⎨
⎩
881

200

⎫⎬
⎭,

⎧⎨
⎩
1461

500

⎫⎬
⎭,
⎧⎨
⎩
3121

1000

⎫⎬
⎭,
⎧⎨
⎩
2663

1000

⎫⎬
⎭,
⎧⎨
⎩
4267

1000

⎫⎬
⎭},

{ {1,0,0,0,0,0,0,0},{0,1,0,0,0,0,0,0}
{0,0,1,0,0,0,0,0},{0,0,0,1,0,0,0,0}
{0,0,0,0,1,0,0,0},{0,0,0,0,0,1,0,0}
{0,0,0,0,0,0,1,0},{0,0,0,0,0,0,0,1}},

{

⎧⎨
⎩
1

4
,
1

5
,
9

20

⎫⎬
⎭ ,

⎧⎨
⎩− 3

10
,
21

50
,
14

25

⎫⎬
⎭ ,

⎧⎨
⎩−17

50
,−1

5
,
39

50

⎫⎬
⎭ ,

⎧⎨
⎩
11

50
,
27

50
,
33

100

⎫⎬
⎭,

⎧⎨
⎩

7

25
,
23

100
,
2

5

⎫⎬
⎭ ,

⎧⎨
⎩− 31

100
,
47

100
,
3

5

⎫⎬
⎭,

⎧⎨
⎩− 31

100
,−11

50
,
87

100

⎫⎬
⎭ ,

⎧⎨
⎩
1

5
,
12

25
,
3

10

⎫⎬
⎭ }

{

⎧⎨
⎩

19

100
,0,0,0

⎫⎬
⎭ ,

⎧⎨
⎩0,

19

100
,0,0

⎫⎬
⎭ ,

⎧⎨
⎩0,0,

19

100
,0

⎫⎬
⎭ ,

⎧⎨
⎩0,0,0,

19

100

⎫⎬
⎭,

⎧⎨
⎩

19

100
,0,0,0

⎫⎬
⎭ ,

⎧⎨
⎩0,

19

100
,0,0

⎫⎬
⎭ ,

⎧⎨
⎩0,0,

19

100
,0

⎫⎬
⎭ ,

⎧⎨
⎩0,0,0,

19

100

⎫⎬
⎭, } }

Then the objective function to be minimized on the

integer field is

objective = ((yR - AR.{ξ110−2,ξ210−2,ξ310−2}-

BR.{z1,z2,z3,z4}) / /Flatten).Inverse[QR];

objective =

objective.((yR - AR.{ξ110−2,ξ210−2,ξ310−2}-

BR.{z1,z2,z3,z4}) / /Simplify / /First;

(1/100000000)(8710109300+7220000z21+7220000z
2
2-

199462000z3+7220000z23-329536000z4+7220000z
2
4+

433740ξ1-247000z3ξ1+159600z4ξ1+6271ξ21-

14615460ξ2-159600z3ξ2+387600z4ξ2+3874ξ1ξ2+

11006ξ21-3800z2(61410+61ξ1-89ξ2-116ξ3)-

26195180ξ3+627000z3ξ3+239400z4ξ3-10636ξ1ξ3+

13480ξ2ξ3+26003ξ23+3800z1(-58050+53ξ1+43ξ2+85ξ3))

First we solve the problem on the real field. The global

minimum is

NMinimize[objective,{z1,z2,z3,z4,ξ1,ξ2,ξ3,ξ4}]

{3.11759×10−6,{z1 → 10.1427,z2 → 11.7696,

z3 → 13.8032,z4 → 16.0825,ξ1 → 109.707,

ξ2 → 154.713,ξ3 → 82.8285

Now we are looking for the integer solution via ex-

tending the region of the constraints step by step until

no further decreasing in the objective value occurs and

while the solutions are inside the constrain regions.

The first iteration is,

constraints =

Apply[And,{9 < z1 < 11,11 < z2 < 12,

13 < z3 < 14,16 < z4 < 17,109 < ξ1 < 110,

154 < ξ2 < 155,82 < ξ3 < 83,

Element[{z1,z2,z3,z4,ξ1,ξ2,ξ3},Integers]}]
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4 Geodetic applications

9 < z1 <11&& 11 <z2 <12&& 13 < z3 <14 &&

16 < z4 <17 && 109 < ξ1 <110 &&

154 < ξ2 <155 && 82 < ξ3 <83 &&

(z1|z2|z3|z4|ξ1|ξ2|ξ3) ∈ Integers]

AbsoluteTiming[Minimize[objective,

constraints,{z1,z2,z3,z4,ξ1,ξ2,ξ3}]//N]

{0.471928, {0.070728,

{z1 →10., z2 →12.,z3 →14., z4 →17.,

ξ1 →110.,ξ2 →155.,ξ3 →83.}}}

After six iterations,

constraints =

Apply[And,{6 < z1 < 14,8 < z2 < 15,

10 < z3 < 17,13 < z4 < 20,118 < ξ1 < 125,

151 < ξ2 < 158,79 < ξ3 < 86,

Element[{z1,z2,z3,z4,ξ1,ξ2,ξ3},Integers]}]

6 < z1 <14&& 8 <z2 <15&& 10 < z3 <17 &&

13 < z4 <20 && 118 < ξ1 <125 &&

151 < ξ2 <158 && 79 < ξ3 <86 &&

(z1|z2|z3|z4|ξ1|ξ2|ξ3) ∈ Integers]

AbsoluteTiming[Minimize[objective,

constraints,{z1,z2,z3,z4,ξ1,ξ2,ξ3}]//N]

{17.7336, {0.0005213,

{z1 →10., z2 →12.,z3 →14., z4 →16.,

ξ1 →122.,ξ2 →153.,ξ3 →83.}}}

In the last two iteration steps we have got the same

objective value therefore x1=1.22, x2=1.53 and

x3=0.83. Blindly rounding of the real solution, we

got incorrect solution for the first two coordinates

x1=1.10, x2=1.55.

objective/.{z1 →10., z2 →12.,z3 →14.,

z4 →16., ξ1 →122.,ξ2 →153.,ξ3 →83.}

0.00844597

Remarks

Employing 3 decimal digits approximation, namely

ξ1 =1000x1, ξ2 =1000x2, ξ3 =1000x3

we can see better results, see Paláncz (2018).

constraints =

Apply[And,{6 < z1 < 14,8 < z2 < 15,

10 < z3 < 17,13 < z4 < 20,118 < ξ1 < 125,

151 < ξ2 < 158,79 < ξ3 < 86,

Element[{z1,z2,z3,z4,ξ1,ξ2,ξ3},Integers]}]

6 < z1 <14&& 8 <z2 <15&& 10 < z3 <17 &&

13 < z4 <20 && 118 < ξ1 <125 &&

151 < ξ2 <158 && 79 < ξ3 <86 &&

(z1|z2|z3|z4|ξ1|ξ2|ξ3) ∈ Integers]

AbsoluteTiming[Minimize[objective,

constraints,{z1,z2,z3,z4,ξ1,ξ2,ξ3}]//N]

{544.533, {0.0000191054,

{z1 →10., z2 →12.,z3 →14., z4 →16.,

ξ1 →1213.,ξ2 →1533.,ξ3 →825.}}}

Since the objective function is a second order polyno-

mial and the constraints are linear, the method will al-

ways find the global minimum.

4.3 Kepler’s third law

Symbolic regression is a type of regression analysis

that searches the space of mathematical expressions to

find the model that best fits a given dataset, both in

terms of accuracy and simplicity. No particular model

is provided as a starting point to the algorithm. Instead,

initial expressions are formed by randomly combin-

ing mathematical building blocks such as mathemat-

ical operators, analytic functions, constants, and state

variables. (Usually, a subset of these primitives will

be specified by the person operating it, but that is not

a requirement of the technique.) New equations are

then formed by recombining previous equations. To

select the optimal set of basic functions, Koza (1992)

suggested employment of genetic programming (GP).

GP is a biologically inspired machine learning method

that evolves computer programs to perform a task. In

order to carry out genetic programming, the individu-

als (competing functions) should be represented by a

binary tree. In standard GP, the leaves of the binary

tree are called terminal nodes represented by variables

and constants, while the other nodes, the so called non-

terminal nodes are represented by functions. Since the

candidate models can be computed independently, par-

allel computation is utilized. Complexity and fitness

are conflicting features leading to a multi-objective

problem. A useful expression is both predictive and

parsimonious. Some expressions may be more accu-
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rate but over-fit the data, whereas others may be more

parsimonious but oversimplify. The prediction error

versus complexity or 1− f (fitness) versus complexity

of the Pareto front represent the optimal solutions as

they vary over expression complexity and maximum

prediction error. As Fig. 4.1 shows, functions repre-

senting the Pareto front have the following features:

Figure 4.1: The Pareto front

As an illustration let us consider the Kepler problem.

The third law of Kepler states: „The square of the or-

bital period of a planet is directly proportional to the

cube of the semi-major axis of its orbit (average dis-

tance from the Sun).“

P2 ∝ a3 (4.6)

where P is the orbital period of the planet and a is the

semi-major axis of the orbit. For example, suppose

planet A is 4 times as far from the Sun as planet B.

Then planet A must traverse 4 times the distance of

planet B for each orbit, and moreover it turns out that

planet A travels at half the speed of planet B, in order

to maintain equilibrium with the reduced gravitational

centripetal force due to being 4 times further from the

Sun. In total it takes 4×2= 8 times as long for planet A

to travel an orbit, in agreement with the law (82 = 43).

The third law currently receives additional attention as

it can be used to estimate the distance from an exo-

planet to its central star, and help to decide if this dis-

tance is inside the habitable zone of that star.

The exact relation, which is the same for both el-

liptical and circular orbits, is given by the formula

above. This third law used to be known as the har-

monic law, because Kepler enunciated it in a laborious

attempt to determine what he viewed as the „music of

the sphere“according to precise laws, and express it in

terms of musical notation. His result is based on the

Rudolphine table containing the observations of Tycho

Brache 1605, see Table 4.1 where a is given in units

of Earth’s semi-major axis. Let us assume that Kepler

could have employed one of the function approxima-

tion techniques like polynomial regression, artificial

neural networks, support vector machine, thin plate

spline. Could he find this simple relation with these

sophisticated methods? Surprisingly the answer is no.

But symbolic regression will work. Fig. 4.2 shows the

Pareto-front of the generated models via DataModeler

(2018). The points represent the generated models.

The red points stand for the models belonging to the

Pareto-front. In Table 4.2 some of the models of the

Pareto front can be seen.

Table 4.1: Normalized observation planetary data

Planet Period P (yr) Semimajor axis a

Mercury 0.24 0.39

Venus 0.61 0.72

Earth 1.00 1.00

Mars 1.88 1.52

Jupiter 11.86 5.20

Saturn 29.46 9.54

Uranus 84.01 19.19

Neptune 164.79 30.06

Pluto 284.54 39.53

It goes without saying that our candidate is the 4-th

model, since it has a small error and at the same time

its complexity is low. In Table 4.3 we can see the statis-

tics of relative errors of the different techniques in per-

centage units.

It is inevitable, that statistically the best model is pro-

vided by the symbolic regression. Even though its

mean error is higher than that of the Kepler solution,

it is simple in practice.

5 Conclusion

The term Hybrid Symbolic-Numeric Computation

(HSNC) has been with us for over two decades now.

We anticipate the day when it falls into disuse, not

because the technology goes out of style, but rather,

since it is just an integral part of the plumbing of math-

ematical computation. Further geodetic solutions us-

ing HSNC are presented in the book of Awange et al.

(2018).
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5 Conclusion

Figure 4.2: The Pareto front (red points) and the evaluated models in case of the Kepler’s problem

Table 4.2: Model selection report

Model Complexity 1−R2 Function

1 11 0.022 -12.550 + 6.116x
2 15 0.012 7.168 + 0.162x2

3 22 0.004 3.174 + 0.135·(-8.024 - x)x
4 25 4.284·10−8 -0.006 + 1.000

√
x

5 55 1.927·10−8 0.009 + 0.0006·(-x + 157.399x3/2)

6 60 1.243·10−8 0.005 + 2.64910·10−4(3768.96x3/2 + 2x2)
7 71 1.242·10−8 0.004 + 1.25410·10−4(7960.56x3/2 + 2x2)
8 75 1.236·10−8 0.004 + 1.25410·10−4(x + 7960.56x3/2 + 2x2)
9 80 1.001·10−8 -0.002 + 0.007 (

√
x + 140.884x3/2 + 0.049x2)

10 113 9.624·10−9 0.028 - 0.002·(5.674/x + 5x - 478.651x3/2 + 1/(-9.892 + 1/x + x))
11 136 8.632·10−9 -0.020 + 0.009·(-x + 115.915x

√
x+

√
x/(12+2x+ x2))

Table 4.3: Statistics of the relative error (%) of the different approximation methods

Method Mean error (%) Max Error (%) Standard deviation (%)

Polynomial Regression 25.14 177.49 59.96

Neural Network 26.80 191.34 64.22

Support Vector Machine 8.89 47.47 16.14

Thin Plate spline 29.10 149.87 49.59

Kepler solution 0.23 1.48 0.51

Symbolic Regression 0.32 0.84 0.37
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