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Abstract

A very large part of the area of Hungary - first of all flatland and hilly areas of
moderate height - was covered with a network of torsion balance stations. As far as torsion
balance measurements are considered Hungary is the most well measured country in the
world. This gives us a good possibility to interpolate a very dense net of deflections of the
vertical from gravity gradients and applying astronomical levelling to compute geoid
heights. Results of the computations in a Hungarian test areca show mean square errors
below a decimetre of geoid undulations computed in this way.

Introduction

Nowadays based on up-to-date geodetic measurement results, contour line maps of the
main geoid forms for the whole Earth are available. These global geoid forms - having a
few metres accuracy - however, do not contain the "fine structure" of the geoid, while we
need at least centimetres accuracy for the practical geodetic purposes (e.g. determination of
height above see level from GPS measurement). A dense net of deflections of the vertical
interpolated from gravity gradients measured by torsion balance gives us a good possibility
to determine a detailed local geoid map.

As known, there exists a definite mathematical relationship between the geoid
undulations and the deflections of the vertical (BIRO, 1982). Between any points P and

P, the geoid height change is
k
AN, =I(§cosa+nsina)ds (1)

where o is the azimuth of the line of length s connecting the two points. For using this
line integral we would have to know the function of deflections of the vertical between the

points. In practice the integral (1) is to be evaluated by a numerical integration:
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Generally we want to compute the difference AN not only between two points but
we need a detailed geoid map for a larger territory. If we want to apply astronomical
levelling for a larger territory, the deflection components must be given at enough stations
such that the interpolation between these stations can be done reliably. In practice we have
a sparser net of astronomical stations, and this astrogeodetic net is interpolated by different
methods. There is a very good possibility to interpolate deflections of the vertical from

gravity gradients where torsion balance measurements are available.

A very simple relationship based on potential theory can be written for the changes of
A&, and An, between arbitrary points i and k of the deflection of the vertical
components & and 7 as well as for gravity gradients W, and W, measured by torsion

balance:

A&, sina,, —An, cosa,, =

' 3
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where n, is the distance between points i and k, g is the average value of gravity
between them, U, and U ,, are gravity gradients in the normal gravity field, whereas «,,
is the direction azimuth between the two points (VOLGYESI, 1993, 1995). The computation
being fundamentally an integration, practically possible only by approximation, in deriving
(3) it had to be supposed that the change of gravity gradients between points i and £,
measurable by torsion balance, was linear — thus the equality sign in (3) is valid only for
this case (VOLGYESI, 1993).

If we have a denser net of deflections of the vertical, and we want to apply
astronomical levelling for a larger territory, we should first interpolate deflection of the
vertical components £ and 7 from an arbitrary shaped network points to grid points of a
square-shaped network. Then applying equation (2) we can compute differences of geoid
heights, along sets of points of the square-shaped network in both east-west and north-
south profiles. Going around each square of the square-shaped network and summarising
AN differences we can get misclosures. These misclosures can be adjusted as if they were
the misclosures of the well known geometrical levelling. Results of this computation will

be the adjusted AN differences between the adjacent square-shaped grid points. If an



initial geoid height N, is given at an arbitrary point of the grid we can get the final geoid
heights N, atpoint i, summarising the suitable AN differences.

A computer program package developed by us is able to determine deflections of the
vertical based on torsion balance measurements either along triangulation chains or in
networks covering arbitrary areas using any of the interpolation methods fully described in
(VOLGYESI, 1993). It can plot the interpolation network and vector diagram of interpolated
deflections of the vertical, calculate geoid heights by astronomic levelling and also plot

either a perspective or an isoline map of the geoid for the area.

Test computations

A characteristic Hungarian area measured by torsion balance extended over some
1200 km*> was chosen for the purpose of our test computation. The torsion balance
measurement points' location in our test area is displayed in Fig. /. Stations were not
located with the same density because the observations were carried out with a greater

density of points in "disturbed" areas of rugged topography. In Figs. 2 and 3 gravity
gradients W, and W, measured by torsion balance were plotted on isoline maps.
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Fig. 1. Torsion balance stations

Six points can be found in the test area where x , 4 deflections of the vertical are

known. Each of these points is such that gravimetric deflections of the vertical are



available based on gravity data; four of them (points labelled 10, 20, 30, and 27) are
astrogeodetic points. Points 70, 20 and 30 are fixed points of interpolation, points /3, /4
and 27 served the purpose of checking interpolated values. The accuracy of relative
deflections of the vertical at the astrogeodetic stations /0, 20, 30 and 27 can be
described by the standard error of astronomic position determinations, which is
My, &y, #1027

The interpolation network in Fig. I has 206 points in all and 203 of these are points
with unknown deflections. Since there are two unknown components of deflection of the
vertical at each point there are 406 unknowns for which 558 equations can be written.

In Figs.4 and5 x and /4 components of deflections of the vertical are visualized in
isoline maps that resulted from the computation. Besides this it is given in 7able I how
large deviations arose at checkpoints between computed and known x, h values. Standard
deviations ~ m, =+0.60" and m, =+0.65", computed from these departures at
checkpoints corroborate the fact that even for large continuous x, 2 values of acceptable
accuracy can be computed from torsion balance measurements.

If for any point of the investigated area the initial value of geoid height N, is known,
further if adequately interpolated deflection values are available for this particular area, the
detailed map of the geoid can be obtained for the given area. Based on the above,
computations were carried out for our experimental area shown in Fig. I, using the

deflection components interpolated previously.

Table 1
Checking point og" on"
27 -0.69 -0.51
13 +0.54 +0.96
14 +0.55 +0.29
Standard deviations +0.60 +0.65

As on this territory no geoid height related to the same reference surface as the given
deflection components was available, the geoid height N, for the experimental area in
Fig. 1 was chosen arbitrarily to be 40.00 m in the astrogeodetic point 30, to serve as
basis for determining geoid heights of further points.

The mentioned geoid map is presented in Fig. 6. It is characteristic for the accuracy
of the computations that going along the chains 30 — 10, 10 — 20, 20 — 30, and
returning to point 30, instead of the initial value N,, = 40.00 m, N,, = 39.93 m was
obtained, - i.e. going around the chain length of about 115 km, a misclosure of only 7 cm
was obtained. This misclosure is characteristic not only of the accuracy of the geoid height,
but is at the same time an excellent possibility to check the confidence of the interpolated

& and 7 values. Therefore deflection values interpolated from torsion balance



observations can be stated to give very economically highly reliable geoid maps which are

most suitable to study local details.
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