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Abstract. A new method was worked out for the
inversion reconstruction of gravity potential. This
method gives a possibility to determine the potential
function and all of its important derivatives using
the common inversion of gravity gradients and the
first derivatives of potential. Gravity gradients can
be originated from Torsion balance measurements,
while the first derivatives of potential can be de-
rived from the deflections of the vertical data. Dif-
ferent fields having great importance can be origi-
nated from this reconstructed potential function at
any points of the investigated area. Advantage of
this method is that the solution can be performed by
a significantly overdetermined inverse problem.

Test computations were performed for the inver-
sion reconstruction of gravity potential. There were
248 torsion balance measurements and 13 points
where the deflections of the vertical are known in
our test area. This inversion algorithm is rather
stable. Gravity potential, the first and the second
derivatives of the potential were determined for the
test area by this suggested method. This method
gives a good possibility for a useful geodetic appli-
cation; deflections of the vertical based on torsion
balance measurements can be determined for the
whole area for each torsion balance stations.
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Introduction

In consequence of scientific activities of Hungar-
ian physicist Lorand Eo6tvos in the 20th century
more than 60000 torsion balance measurements
were made in Hungary. At present time serious
efforts are going on for rescuing the historical tor-
sion balance measurements; nowadays 24544 tor-
sion balance measurements are available for further
processing in computer database.

Under Hungarian conditions, in addition to gradi-

ent values W., and W, also curvature data W,

and W, =W, —W,, are available with great preci-

sion. Since earlier torsion balance measurements
were made mainly for geophysical prospecting,
mostly only gravity gradients have been processed;
up to now, gravity curvature values have been left
unprocessed.

New computer technology opened new vistas on
the area of geodetic applications of torsion balance
measurements. Earlier researches have started, first
about interpolation of deflection of the vertical
based on torsion balance measurements over larger
regions (Volgyesi 1993, 1995, 2005), then for the
determination of the fine details of the geoid based
on deflections of the vertical (Volgyesi 1998, 2001;
Téth and Volgyesi 2002).

A new method for inversion reconstruction of
gravity potential suggested here. This method gives
a new possibility to determine deflections of the
vertical based on torsion balance measurements.

1 Inversion algorithm

Let us choose the gravity potential W (x,y)as an

expansion in a series of a known set of basis func-
tion #,...%Yp:
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unknown coefficients of the expansion in a series.
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The number of unknowns are M = +P+1.

Generally, there are different types of basis func-
tions, - in our case power functions, or Chebishev,
Legendre, ... etc polynomials are supposed as basis
functions.



So the solution of the direct problem (the values
of curvature data W, and W,,) can be computed as
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Introducing the notations
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the computed torsion balance data in an arbitrary
point P, (x,,y;) are
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where S;;, O, are known matrix elements (the

index j is determined uniquely by i and /7).
So the discrepancies of the measured and the
computed data are
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Let the function have to be minimized the norm L,
of the discrepancy vector:
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where N, and N, are the numbers of measured
data W,, and W, respectively. Let us introduce the

notations
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for the vectorial discussion, where N = N, +N,.
Solution of this inverse problem is based on the

condition system % =0, (/=1...,M) resulting in
i

the set of normal equations

G'GB=G" "“d.
So this inverse problem is linear, vector B of ex-
pansion in a series’ coefficients can be determined
by solving the above set of equations
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Unfortunately there are no equations for the coeffi-
cients of B, B;, B, (constant term, and the coeffi-
cients of linear terms of x and y), because of torsion
balance can measure only the second derivates of
gravity potential.

Further on, the constant term B, is not important

for us because this is only an additive constant for
the potential. But determination of the B, and B,

are important, which requires further independent
information.

This information may come from deflection of
the vertical’s data.

The two components of deflections of the vertical
in N-S and E-W directions:

E=@—-¢, and n=(A-A)cosp

where @, A are the astronomical and ¢,4 are the

geographical latitude and longitude respectively. At
the same time
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where U is the potential of normal gravity field, g is
the real and yis the normal gravity (Volgyesi,

2005). The first derivatives from the deflection of
the vertical’s components:



Wy=gE+SU, and W, =gn+3U,.
y y

In a suitable local coordinate system U, ~U, =0 ,
therefore
W,=g¢& and W, =gn.
From the expansion in a series of gravity poten-
tial:
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where F(x,y), G(x,y) are known, because the
coefficients B, (j>3) are given. E.g. if deflection

of the vertical components (&;,7;) are known at

point A(x=x;, y=y;), then

By ==F(x,y))+g&
and
By, ==G(x;,y))+gmn,.

So the potential function - apart from an additive
constant - can be determined at any points of the
region covered by torsion balance measurements
using the coefficients of expansion in a series of a
known set of basis function.

Unfortunately this algorithm can not be used at
any times in this form, because the coefficients of
the power series may not be independent from each
other, if we use power functions or Chebishev,
Legendre, etc. polynomials as basis functions (Do-
broka, Volgyesi 2005). E.g. according to our inves-
tigations there are all constant terms in the first
three columns of the Jacobi matrix G referring to

every torsion balance points (Dobroka, Volgyesi
2005). So this three columns are not linearly inde-

pendent therefore the matrix gT G of normal equa-

tions will be singular, and the inverse problem can
not be solvable.

The joint inversion of the data arising from vari-
ous physical background is well-known in geo-
physical inversion (Dobroka et al., 1991). Our pre-
sent problem is similar and can be handled on the
same way: by integrating the torsion balance data
and deflection of the vertical data into a single
(joint) inversion procedure.

Data of first derivatives can be originated from
the deflections of the vertical:

measWx — mea.vg g and measWy — measn g .

The theoretical values of these data can be deter-
mined by using the expansion formula of potential:
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Integrating the vector of torsion balance data and
the first derivatives data derived from deflections of
the vertical into a complete data vector we define:
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Vector of computed data can be prepared in a simi-
lar form, but extension of structure of Jacobi matrix
is necessary:
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So, the computed data:
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and discrepancies of the measured and the com-
puted data:
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N=N,+N,+N;+N,.

Applying %:0 , (=1,..,.M), solution of this
i

inverse problem can get too:
ngé :gr meas j
where from:
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This inversion algorithm is rather stable as it was
proved earlier by test computations (Dobrdoka, Vol-
gyesi 2005).

2 Test computations

Test computations were performed in an area

extending over some 750 km® where 248 torsion
balance stations can be found. There are 13 from
these torsion balance points where astrogeodetic or
astrogravimetric data are available too. Both
topographic conditions, density of torsion balance
measurements and astrogeodetic stations reflects
average conditions of Hungary here. Location of
torsion balance stations can be seen on Fig. 1
marked by small circles. The 3 astrogeodetic points
indicated with squares and the 10 astrogravimetric
points indicated with triangles on Fig. 1 were used
as initial (fixed) points of computations. & and n
values were known in these points referring to the
GRS80 system.
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Fig. 1. The test area (coordinates are in meters in the Hun-
garian Unified National Projections (EOV) system).

In Figs. 2 and 3 curvature gradients W, and
2., measured by torsion balance are visualized

on our test area. The figures show relatively high

spatial variations predicting the need of high

polinomial order in the series expansion

represenation of the potential field given above.
Using the W, and 217, data sets as well as the

W, and W, data derived from astrogravimetric and

astrogeodetic data we made some tests of the joint
inversion algorithm proposed in this paper.
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Fig. 2. Isoline map of curvature data W, on the test area.
Isoline interval is 5 E. (1E = 1Eétvés Unit = 107 s2)
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Fig.3. Isoline map of curvature data 2ny on the test area.

Isoline interval is 5 E. (1E = 1E6tvés Unit = 107 s)

Solving the inverse problem the expansion coef-
ficients are determined with the help of which the
potential field and both of its first and second de-
rivatives (including W, and 2W,,) can be found at

any point of the test area. Fig. 4 Fig. 5 show the
isoline map of the calculated (predicted) W, and
2W,, data. The polynomial order was P=30 in this
case which means 496 unknowns. The fit between

the measured data (Figs. 2 and 3) and the predic-
tions (Figs. 4 and 5) seems to be satisfactory.



Our experiences show that care should be taken
in choosing the polynomial order because increas-
ing its value the condition number of the normal
equation increases rapidly. This can make the pa-
rameter estimation (coefficients B) unreliable with
high estimation errors and strong correlation be-
tween some coefficients. It was found, that P=18 —
24 can give good compromise between resolution
and stability in our problem.
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Fig. 4. Computed curvature field W, from joint inversion.
Isoline interval is 5 E. (1E = 1E&tvés Unit = 107 s7)
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Fig.5. Computed curvature field Zny from joint inversion.

Isoline interval is 5 E. (1E = 1E6tvos Unit = 107 s7)

In the knowledge of the expansion coefficients, it
is also possible to compute the potential field and its
first derivatives by using the expansion formula.
Apart from an additive constant gravity potential
field is shown by Fig. 6 as an isoline map (isoline
interval is 0.1 m’s?). Figs. 7 and 8 show the isoline
map of the first derivatives W, and W,. The

polynomial order was chosen P=1/9, in this case.
Isoline interval is 0.5 mGal (1 mGal = 10” ms™) on
these figures.
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Fig. 6. Computed potential field from joint inversion. Isoline
interval is 0.1 m’s™
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Fig. 7. Computed W, field from joint inversion. Isoline
interval is 0.5 mGal (1 mGal = 10" ms?)
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Fig. 8. Computed Wy field from joint inversion. Isoline

interval is 0.5 mGal (1 mGal = 10~ ms?)
3 Geodetic applications

Using equations §=W,/g and n=W,/g com-

ponents of deflection of the vertical can be deter-



mined from the first derivatives of potential W, and
W, . Fig. 9 shows the vector map of deflections of

the vertical on the test area. (Deflections of the
vertical can be imagined as vectors, the lengths of

vectors are 6 = \/52 + 772 and the positive direction

of vectors shows from the ellipsoidal zenith to the
astronomical one.)
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Fig. 9. Computed vectors of deflections of the vertical.

As a comparison the same fields determined by
using the method of collocation are shown in Fig.
10 (Téth, Volgyesi 2002). It can be seen, that the
two methods give similar results.
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Fig. 10 Vectors of deflections of the vertical from colloca-
tion.

4 Conclusion

Our discussed method gives good a possibility for
the determination of potential function by common
inversion using both a large number of torsion bal-
ance and a few astronomical (deflection of the ver-
tical) data. Different fields (the first and the second
derivatives of the potential) having great impor-
tance can be originated from this reconstructed
potential function at any points of the investigated
area. Advantage of this method is that the solution
can be performed by a significantly overdetermined
inverse problem.

A useful geodetic application of this method is
the determination of deflections of the vertical
based on torsion balance measurements.
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