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Abstract. A new method was worked out for the 
inversion reconstruction of gravity potential. This 
method gives a possibility to determine the potential 
function and all of its important derivatives using 
the common inversion of gravity gradients and the 
first derivatives of potential. Gravity gradients can 
be originated from Torsion balance measurements, 
while the first derivatives of potential can be de-
rived from the deflections of the vertical data. Dif-
ferent fields having great importance can be origi-
nated from this reconstructed potential function at 
any points of the investigated area. Advantage of 
this method is that the solution can be performed by 
a significantly overdetermined inverse problem. 

Test computations were performed for the inver-
sion reconstruction of gravity potential. There were 
248 torsion balance measurements and 13 points 
where the deflections of the vertical are known in 
our test area. This inversion algorithm is rather 
stable. Gravity potential, the first and the second 
derivatives of the potential were determined for the 
test area by this suggested method. This method 
gives a good possibility for a useful geodetic appli-
cation; deflections of the vertical based on torsion 
balance measurements can be determined for the 
whole area for each torsion balance stations. 
 
Keywords. inversion, gravity potential, curvature 
gradients of gravity, deflection of the vertical, tor-
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Introduction 

In consequence of scientific activities of Hungar-
ian physicist Loránd Eötvös in the 20th century 
more than 60000 torsion balance measurements 
were made in Hungary. At present time serious 
efforts are going on for rescuing the historical tor-
sion balance measurements; nowadays 24544 tor-
sion balance measurements are available for further 
processing in computer database. 

Under Hungarian conditions, in addition to gradi-
ent values zxW  and zyW , also curvature data xyW  

and xxyy WWW −=∆  are available with great preci-
sion. Since earlier torsion balance measurements 
were made mainly for geophysical prospecting, 
mostly only gravity gradients have been processed; 
up to now, gravity curvature values have been left 
unprocessed. 

New computer technology opened new vistas on 
the area of geodetic applications of torsion balance 
measurements. Earlier researches have started, first 
about interpolation of deflection of the vertical 
based on torsion balance measurements over larger 
regions (Völgyesi 1993, 1995, 2005), then for the 
determination of the fine details of the geoid based 
on deflections of the vertical (Völgyesi 1998, 2001; 
Tóth and Völgyesi 2002). 

A new method for inversion reconstruction of 
gravity potential suggested here. This method gives 
a new possibility to determine deflections of the 
vertical based on torsion balance measurements. 

1 Inversion algorithm 

Let us choose the gravity potential ),( yxW as an 
expansion in a series of a known set of basis func-
tion PΨΨ ....0 : 

∑∑
+

=

−

=

=
1

1

1

0

)()(),(
P

n

n

i
lij xyByxW ΨΨ  

where 1,
2

)1(
−−=+

−
= inlinnj  and jB  are 

unknown coefficients of the expansion in a series. 
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Generally, there are different types of basis func-
tions, - in our case power functions, or Chebishev, 
Legendre, … etc polynomials are supposed as basis 
functions. 



So the solution of the direct problem (the values 
of curvature data ∆W  and xyW ) can be computed as 
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Introducing the notations 
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and 
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the computed torsion balance data in an arbitrary 
point ),( kkk yxP  are 
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where kjkj QS ,  are known matrix elements (the 
index  j  is determined uniquely by  i  and  l ).  

So the discrepancies of the measured and the 
computed data are 
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Let the function have to be minimized the norm 2L  
of the discrepancy vector: 
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where 1N  and 2N  are the numbers of measured 
data xyW  and ∆W  respectively. Let us introduce the 
notations 
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for the vectorial discussion, where 21 NNN += . 
Solution of this inverse problem is based on the 

condition system 0=
∂
∂

lB
E ,  ),...,1( Ml = resulting in 

the set of normal equations 

dGBGG measTT rr
= . 

So this inverse problem is linear, vector B
r

 of ex-
pansion in a series’ coefficients can be determined 
by solving the above set of equations 

 

( ) dGGGB TT rr 1−
= . 

 
 Unfortunately there are no equations for the coeffi-
cients of 210 ,, BBB  (constant term, and the coeffi-
cients of linear terms of x and y), because of torsion 
balance can measure only the second derivates of 
gravity potential. 

Further on, the constant term 0B  is not important 
for us because this is only an additive constant for 
the potential. But determination of the 1B  and 2B  
are important, which requires further independent 
information. 

This information may come from deflection of 
the vertical’s data. 

The two components of deflections of the vertical 
in  N-S  and  E-W  directions: 

ϕΦξ −= ,  and  ϕλΛη cos)( −=  

where ΛΦ ,  are the astronomical and λϕ,  are the 
geographical latitude and longitude respectively. At 
the same time  

γ
ξ xx U

g
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where U is the potential of normal gravity field, g is 
the real and γ is the normal gravity (Völgyesi, 
2005). The first derivatives from the deflection of 
the vertical’s components: 



xx UggW
γ

ξ +=   and  yy UggW
γ

η += . 

In a suitable local coordinate system 0≈≈ yx UU  , 
therefore 

ξgWx =   and  ηgWy = . 

From the expansion in a series of gravity poten-
tial: 
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where ),(),,( yxGyxF  are known, because the 
coefficients  )3( ≥jB j  are given. E.g. if deflection 

of the vertical components ),( 11 ηξ  are known at 
point ),( 111 yyxxP == , then 

1111 ),( ξgyxFB +−=  

and 

1112 ),( ηgyxGB +−= . 

So the potential function - apart from an additive 
constant - can be determined at any points of the 
region covered by torsion balance measurements 
using the coefficients of expansion in a series of a 
known set of basis function. 

Unfortunately this algorithm can not be used at 
any times in this form, because the coefficients of 
the power series may not be independent from each 
other, if we use power functions or Chebishev, 
Legendre, etc. polynomials as basis functions (Do-
bróka, Völgyesi 2005). E.g. according to our inves-
tigations there are all constant terms in the first 
three columns of the Jacobi matrix G  referring to 
every torsion balance points (Dobróka, Völgyesi 
2005). So this three columns are not linearly inde-
pendent therefore the matrix GGT  of normal equa-
tions will be singular, and the inverse problem can 
not be solvable.  

The joint inversion of the data arising from vari-
ous physical background is well-known in geo-
physical inversion (Dobroka et al., 1991). Our pre-
sent problem is similar and can be handled on the 
same way: by integrating the torsion balance data 
and deflection of the vertical data into a single 
(joint) inversion procedure. 

Data of first derivatives can be originated from 
the deflections of the vertical: 

gW meas
x

meas ξ=    and   gW meas
y

meas η= . 

The theoretical values of these data can be deter-
mined by using the expansion formula of potential: 
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Integrating the vector of torsion balance data and 
the first derivatives data derived from deflections of 
the vertical into a complete data vector we define: 
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Vector of computed data can be prepared in a simi-
lar form, but extension of structure of Jacobi matrix 
is necessary: 
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So, the computed data: 
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and discrepancies of the measured and the com-
puted data: 
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Applying 0=
∂
∂

lB
E ,  ),...,1( Ml = , solution of this 

inverse problem can get too:  

dGBGG measTT rr
=  

where from: 

( ) dGGGB TT rr 1−
=  . 

This inversion algorithm is rather stable as it was 
proved earlier by test computations (Dobróka, Völ-
gyesi 2005). 

2 Test computations 

Test computations were performed in an area 
extending over some 750 2km  where 248 torsion 
balance stations can be found. There are 13 from 
these torsion balance points where astrogeodetic or 
astrogravimetric data are available too. Both 
topographic conditions, density of torsion balance 
measurements and astrogeodetic stations reflects 
average conditions of Hungary here. Location of 
torsion balance stations can be seen on Fig. 1 
marked by small circles. The 3 astrogeodetic points 
indicated with squares and the 10 astrogravimetric 
points indicated with triangles on Fig. 1 were used 
as initial (fixed) points of computations. ξ and η 
values were known in these points referring to the 
GRS80 system.  
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Fig. 1. The test area (coordinates are in meters in the Hun-
garian Unified National Projections (EOV) system). 

 
In Figs. 2 and 3 curvature gradients ∆W  and 

xyW2  measured by torsion balance are visualized 
on our test area. The figures show relatively high 

spatial variations predicting the need of high 
polinomial order in the series expansion 
represenation of the potential field given above. 

Using the ∆W  and xyW2  data sets as well as the 

xW  and yW data derived from astrogravimetric and 
astrogeodetic data we made some tests of the joint 
inversion algorithm proposed in this paper. 
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Fig. 2. Isoline map of curvature data ∆W  on the test area. 
Isoline interval is 5 E. (1E = 1Eötvös Unit = 10-9 s-2) 
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Fig.3. Isoline map of curvature data xyW2  on the test area. 

Isoline interval is 5 E. (1E = 1Eötvös Unit = 10-9 s-2) 
 
 Solving the inverse problem the expansion coef-
ficients are determined with the help of which the 
potential field and both of its first and second de-
rivatives (including ∆W  and xyW2 ) can be found at 
any point of the test area. Fig. 4 Fig. 5 show the 
isoline map of the calculated (predicted) ∆W  and 

xyW2  data. The polynomial order was P=30 in this 
case which means 496 unknowns. The fit between 
the measured data (Figs. 2 and 3) and the predic-
tions (Figs. 4 and 5) seems to be satisfactory.  



 Our experiences show that care should be taken 
in choosing the polynomial order because increas-
ing its value the condition number of the normal 
equation increases rapidly. This can make the pa-
rameter estimation (coefficients B) unreliable with 
high estimation errors and strong correlation be-
tween some coefficients. It was found, that P=18 – 
24 can give good compromise between resolution 
and stability in our problem. 

645000 650000 655000 660000 665000 670000 675000

145000

150000

155000

160000

165000

 
Fig. 4. Computed curvature field ∆W  from joint inversion. 
Isoline interval is 5 E. (1E = 1Eötvös Unit = 10-9 s-2) 
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Fig.5. Computed curvature field xyW2  from joint inversion. 

Isoline interval is 5 E. (1E = 1Eötvös Unit = 10-9 s-2) 
 

In the knowledge of the expansion coefficients, it 
is also possible to compute the potential field and its 
first derivatives by using the expansion formula. 
Apart from an additive constant gravity potential 
field is shown by Fig. 6 as an isoline map (isoline 
interval is 0.1 m2s-2). Figs. 7 and 8 show the isoline 
map of the first derivatives xW  and yW . The 
polynomial order was chosen P=19, in this case. 
Isoline interval is 0.5 mGal (1 mGal = 10-5 ms-2) on 
these figures. 
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Fig. 6. Computed potential field from joint inversion. Isoline 
interval is 0.1 m2s-2 
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Fig. 7. Computed xW  field from joint inversion. Isoline 
interval is 0.5 mGal (1 mGal = 10-5 ms-2) 
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Fig. 8. Computed yW  field from joint inversion. Isoline 

interval is 0.5 mGal (1 mGal = 10-5 ms-2) 

3 Geodetic applications 

Using equations gWx /=ξ   and  gWy /=η  com-
ponents of deflection of the vertical can be deter-



mined from the first derivatives of potential xW  and 

yW . Fig. 9 shows the vector map of deflections of 
the vertical on the test area. (Deflections of the 
vertical can be imagined as vectors, the lengths of 

vectors are 22 ηξθ += and the positive direction 
of vectors shows from the ellipsoidal zenith to the 
astronomical one.) 
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Fig. 9. Computed vectors of deflections of the vertical.  
 
 
As a comparison the same fields determined by 
using the method of collocation are shown in Fig. 
10 (Tóth, Völgyesi 2002). It can be seen, that the 
two methods give similar results. 
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Fig. 10 Vectors of deflections of the vertical from colloca-
tion. 

4 Conclusion  

Our discussed method gives good a possibility for 
the determination of potential function by common 
inversion using both a large number of torsion bal-
ance and a few astronomical (deflection of the ver-
tical) data. Different fields (the first and the second 
derivatives of the potential) having great impor-
tance can be originated from this reconstructed 
potential function at any points of the investigated 
area. Advantage of this method is that the solution 
can be performed by a significantly overdetermined 
inverse problem. 

A useful geodetic application of this method is 
the determination of deflections of the vertical 
based on torsion balance measurements. 
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