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Abstract. Torsion balance measurements are a 
very useful source to study the short wavelength 
features of the local gravity field, especially below 
30 km wavelength. Our purpose is to use the grav-
ity gradients measured by torsion balance in com-
bination with gravity values for the determination 
of a more detailed and better gravity field. Previ-
ously determination of gravity anomalies was 
investigated (Völgyesi, Tóth, Csapó 2004), and 
now the determination of gravity field from torsion 
balance measurements is discussed. 
A method was developed, based on integration of 
horizontal gradients of gravity zxW  and zyW  to 
predict gravity at all points of a torsion balance 
network. Test computations were performed in a 
characteristic flat area where both torsion balance 
and gravimetric measurements are available. There 
were 248 torsion balance stations and 1197 gravity 
measurements on this area. 18 points from these 
248 torsion balance stations were chosen as fixed 
points where gravity are known from measure-
ments and the unknown gravity values were inter-
polated on the remaining 230 points. 

Comparison of the measured and the interpolated 
gravity values indicates that horizontal gradients of 
gravity give a possibility to determine gravity val-
ues from torsion balance measurements by mGal 
accuracy on flat areas. 
 
Keywords. Determination of gravity field, horizon-
tal gradients of gravity, torsion balance measure-
ments. 
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1 The proposed method 
 
Let’s start from the relationship between gravity 
and gravity potential: 

Wgrad−=g , (1) 

where W is the gravity potential. Changing of grav-
ity  g  between two arbitrary points iP  and kP  is: 
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In a special coordinate system (x points to North, y 
to East and z to Down) the changing of gravity: 
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Applying the notation zWWz ∂∂= /  for the par-
tial derivatives, the changing of gravity between the 
two points iP  and kP  is: 

( ) izkzik WWgg )()( −=− . 

So in the case of displacement vector dr the infini-
tesimal change of gravity g will be: 
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Integrating this equation between points iP  and kP  
we get the changing of gravity: 
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where zxW  and zyW  are horizontal gradients of 
gravity measured by torsion balance, zzW  is the 
measured vertical gradient. 

Let’s compute the first integral on the right side 
of equation (2) between the points iP  and kP . Be-
fore the integration a relocation to a new coordinate 
system is necessary; the connection between the 
coordinate systems (x, y) and the new one (u, v) can 
be seen on Figure 1. Denote the direction between 



the points iP  and kP  with u and be the coordinate 
axis v perpendicular to u. Denote the azimuth of u 
with ikα  and point the z axis to down, perpendicu-
larly to the plane of (xy) and (uv)!  
 

 
Fig. 1 Coordinate transformation (x,y)→(u,v) 
 
The transformation between the two systems is: 
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Using these equations, the first derivatives of any 
function W are: 
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From this first equation  
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If points iP  and kP  are close to each other as re-
quired, integrals on the right side of equation (2) 
can be computed by the following trapezoidal inte-
gral approximation formula: 
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where iks  is the horizontal distance between points 

iP  and kP , ikh∆  is the height difference between 
these two points and zzU  is the normal value of the 
vertical gradient.  
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where )sin1( 2 ϕβγγ += e  is the normal gravity on 
the ellipsoid; M and N is the curvature radius of U 
in the meridian and in the prime vertical. With the 
values of the Geodetic Reference System 1980, the 
following holds at the surface of the ellipsoid: 

23086 −= nsU zz . 

The value of integral (4) depends on the vertical 
gradient zzW  and the height difference between the 
points. 

So, discarding the effect of (4) the differences of 
gravity values between two points can be computed 
by the approximate equation: 
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If the normal value of vertical gradient zzU  dif-
fers significantly from the real value, taking into 
account the real value is necessary. 

 
2 Practical solutions 
 
If we have a large number of torsion balance meas-
urements, it is possible to form an interpolation net 
(a simple example can be seen in Figure 2) for de-
termining gravity at each torsion balance points 
(Völgyesi, 1993, 1995, 2001). On the basis of Eq. 
(5) 

ikik Cgg =− )(  (6) 

can be written between any adjacent points, where 
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Fig. 2 Interpolation net connecting torsion balance points 

 
For an unambiguous interpolation it is necessary 

to know the real gravity value at a few points of the 
network (triangles in Figure 2). Let us see now, how 
to solve interpolation for an arbitrary network with 
more points than needed for an unambiguous solu-
tion, where gravity values are known. In this case 
the  g  values can be determined by adjustment.  

The question arises what data are to be consid-
ered as measurement results for adjustment: the real 
torsion balance measurements zxW  and zyW  , or 

ikC  values from Eq. (7). Since no simple functional 
relationship (observation equation) with a meas-
urement result on one side and unknowns on the 
other side of an equation can be written, computa-
tion ought to be made under conditions of adjust-
ment of direct measurements, rather than with 
measured unknowns − this is, however, excessively 
demanding in terms of storage capacity. Hence 
concerning measurements, two approximations will 
be applied: on the one hand, gravity values from 
measurements at the fixed points are left uncor-
rected − thus, they are input to adjustment as con-
straints − on the other hand, ijC  on the left hand 
side of fundamental equation (6) are considered as 
fictitious measurements and corrected. Thereby 
observation equation (6) becomes: 

ikikik ggvC −=+  (8) 

permitting computation under conditions given by 
adjusting indirect measurements between unknowns 
(Detrekői, 1991). 

The first approximation is possible since reliabil-
ity of the gravity values determined from measure-
ments exceeds that of the interpolated values con-
siderably. Validity of the second approximation will 
be reconsidered in connection with the problem of 
weighting. 

For every triangle side of the interpolation net, 
observation equation (8): 

 ikikik Cggv −−=  (9) 

may be written. In matrix form: 

)1,()1,2()2,()1,( mnnmm
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where A is the coefficient matrix of observation 
equations, x  is the vector containing unknowns g , 
l is the vector of constant terms, m is the number of 
triangle sides in the interpolation net and n is the 
number of points. The non-zero terms in an arbi-
trary row i of matrix A are: 

[ ]...0110... −+  

while vector elements of constant term l are the  
ikC   values. 
Gravity values fixed at given points modify the 

structure of observation equations. If, for instance, 
0kk gg =  is given in (8), then the corresponding 

row of matrix A is: 

[ ]...0100... −  

the changed constant term being: 0kij gC − , that is 

kg , and of coefficients of kg  are missing from 
vector x, and matrix A, respectively, while corre-
sponding terms of constant term vector l are 
changed by a value 0kg . 

Adjustment raises also the problem of weighting. 
Fictitious measurements may only be applied, how-
ever, if certain conditions are met. The most impor-
tant condition is the deducibility of covariance 
matrix of fictitious measurements from the law of 
error propagation, requiring, however, a relation 
yielding fictitious measurement results, − in the 
actual case, Eq. (7). Among quantities on the right-
hand side of (7), torsion balance measurements  

zxW   and  zyW   may be considered as wrong. They 
are about equally reliable E1±  
( 291011 −−== sUnitEötvösE ), furthermore, they may 
be considered as mutually independent quantities, 
thus, their weighting coefficient matrix WWQ  will 
be a unit matrix. With the knowledge of WWQ , the 
weighting coefficient matrix CCQ  of fictitious 
measurements ikC  after Detrekői (1991) is: 

FFFQFQ ** == WWCC  

EQ =WW  being a unit matrix. Elements of an arbi-

trary row i of matrix *F  are: 
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For the following considerations let us produce 
rows *f1  and *f2  of matrix *F  (referring to sides 
between points 21 PP −  and 31 PP −  respectively): 
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Using *f1 , variance of ikC  value referring to side 

21 PP −  is: 
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while *f1  and *f2  yield covariance of ikC  values for 
sides 21 PP −  and 31 PP − : 
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Thus, fictitious measurements may be stated to be 
correlated, and the weighting coefficient matrix 
contains covariance elements at the junction point 
of the two sides. If needed, the weighting matrix 
may be produced by inverting this weighting coeffi-
cient matrix. Practically, however, two approxima-
tions are possible: either fictitious measurements 

ijC  are considered to be mutually independent, so 
weighting matrix is a diagonal matrix; or fictitious 
measurements are weighted in inverted quadratic 
relation to the distance. 

By assuming independent measurements, the sec-
ond approximation results also from inversion, 
since terms in the main diagonal of the weighting 
coefficient matrix are proportional to the square of 
the side lengths. The neglection is, however, justi-
fied, in addition to the simplification of computa-
tion, also by the fact that contradictions are due less 

to measurement errors than to functional errors of 
the computational model (Völgyesi, 1993). 
 
3 Test computations 
 
Test computations were performed in a Hungarian 
area extending over about 750 2km . In the last cen-
tury approximately 60000 torsion balance meas-
urements were made mainly on the flat territories of 
Hungary, at present 24310 torsion balance meas-
urements are available. Location of these 24310 
torsion balance observational points and the site of 
the test area can be seen on Figure 3. 
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Fig. 3 Torsion balance measurements being stored in com-
puter database, and the site of the test area  
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Fig. 4 Gravity measurements (marked by dots) and torsion 
balance points (marked by circles) on the test area 
 

Our test area can be found nearly in the middle of 
Hungary (see on Fig. 3). There were 248 torsion 
balance stations and 1197 gravity measurements on 
this area.  18 points from these 248 torsion balance 
stations were chosen as fixed points where gravity 
are known from measurements and the unknown 
gravity values were interpolated on the remaining 



230 points. Location of torsion balance stations 
(marked by circles) and the gravity measurements 
(marked by dots) can be seen on Figure 4. 

Topography of the test area can be seen on fig 5, 
the height difference between the lowest and high-
est points is less than 20 m. 

 
Fig. 5 Topography of the test area (heights above sea level)  
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Fig. 6 Gravity field from g measurements on the test area 
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Fig. 7 Isoline map of interpolated gravity values from hori-
zontal gradients of gravity zxW  and zyW  measured by 
torsion balance 

The isoline map of gravity constructed from 
1197 g measurements can be seen on Figure 6. 
Small dots indicate the locations of measured grav-
ity values. Measurements were made by Worden 
gravimeters, by accuracy of ±20-30 µGal. At the 
same time the isoline map of gravity values con-
structed from the interpolated values from 248 
torsion balance measurements can be seen on Fig-
ure 7. Small circles indicate the locations of torsion 
balance points. 

More or less a good agreement can be seen be-
tween these two isoline maps. In order to control 
the applicability and accuracy of interpolation, we 
compared the given and the interpolated g values.  
Gravity values were determined for each torsion 
balance points from gravity measurements by linear 
interpolation on the one hand and gravity values for 
the same points from gravity gradients measured by 
torsion balance were computed on the other. Isoline 
and surface maps of differences between the two 
types of g values can be seen on Figures 8 and 9. 
The differences are about ±1−2 mGal the maximum 
difference is 6 mGal. 
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Fig. 8 Isoline map of differences between the measured and 
the interpolated gravity values 

 
Fig. 9 Surface map of differences between the measured and 
the interpolated gravity values 



Finally the standard error characteristic to inter-
polation, determined by 
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was computed (where .me
ig  are from gravity meas-

urements, .int
ig  are the interpolated values from 

torsion balance measurements and 248=n  is the 
number of torsion balance stations). Standard error 

mGal6.1±=gm  indicates that horizontal gradients 
of gravity give a possibility to determine gravity 
from torsion balance measurements by mGal accu-
racy on flat areas. 

It is interesting that a correlation can be found 
comparing the surface map of differences between 
the measured and the interpolated gravity values 
(see Fig. 9) by the topography of the test area (see 
Fig. 5). The biggest errors can be found at the right 
side of the test area, where the biggest height differ-
ences are. In case of a not flat area accuracy of 
interpolation would probably be increased by taking 
into consideration the real vertical gradient values 
instead of the normal one. Unfortunately we haven’t 
got the real vertical gradient values at torsion bal-
ance points on our test area yet.  

It would be important to investigate the effect of 
vertical gradient’s value for the interpolation in the 
future. The real value of zzW  can be computed from 
torsion balance measurements too, investigations 
are going on in this respect (Tóth-Völgyesi-Csapó, 
2004). 
 
Summary 
 
A method was developed, based on integration of 
horizontal gradients of gravity zxW  and zyW , to 
predict gravity values at all points of the torsion 
balance network. Test computations were per-

formed in a characteristic area in Hungary where 
both torsion balance and gravimetric measurements 
are available. Comparison of the measured and the 
interpolated gravity values indicates that horizontal 
gradients of gravity give a possibility to determine 
gravity field from torsion balance measurements by 
mGal accuracy. Accuracy of interpolation would 
probably be increased by taking into consideration 
the real values of vertical gradient instead of normal 
one. 
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