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Abstract. Torsion balance measurements are a
very useful source to study the short wavelength
features of the local gravity field, especially below
30 km wavelength. Our purpose is to use the grav-
ity gradients measured by torsion balance in com-
bination with gravity values for the determination
of a more detailed and better gravity field. Previ-
ously determination of gravity anomalies was
investigated (Volgyesi, Toth, Csapd 2004), and
now the determination of gravity field from torsion
balance measurements is discussed.

A method was developed, based on integration of

horizontal gradients of gravity W, and W, to

predict gravity at all points of a torsion balance
network. Test computations were performed in a
characteristic flat area where both torsion balance
and gravimetric measurements are available. There
were 248 torsion balance stations and 1197 gravity
measurements on this area. 18 points from these
248 torsion balance stations were chosen as fixed
points where gravity are known from measure-
ments and the unknown gravity values were inter-
polated on the remaining 230 points.

Comparison of the measured and the interpolated
gravity values indicates that horizontal gradients of
gravity give a possibility to determine gravity val-
ues from torsion balance measurements by mGal
accuracy on flat areas.

Keywords. Determination of gravity field, horizon-
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1 The proposed method

Let’s start from the relationship between gravity
and gravity potential:

g=—grad W, (N

where W is the gravity potential. Changing of grav-
ity g between two arbitrary points P. and P, is:

-e)= (3,5

In a special coordinate system (x points to North, y
to East and z to Down) the changing of gravity:

w-o| (%) %))

Applying the notation W, =0W /0z for the par-

tial derivatives, the changing of gravity between the
two points P, and P, is:

(g —gi)=W.) —(7.); .

So in the case of displacement vector dr the infini-
tesimal change of gravity g will be:

dg=V(g)-dr =8—gdx+a—gdy+a—gdz =
ox oy 0z .
W dx+W.dy+W_dz

Integrating this equation between points £, and P,
we get the changing of gravity:

k k k k
(g —21)= _[dg = _[szdx +IWzydy +Iszdz (2

where W_ and W, are horizontal gradients of
gravity measured by torsion balance, W_ is the
measured vertical gradient.

Let’s compute the first integral on the right side
of equation (2) between the points P. and P, . Be-

fore the integration a relocation to a new coordinate
system is necessary; the connection between the
coordinate systems (x, y) and the new one (u, v) can
be seen on Figure 1. Denote the direction between



the points P, and P, with u and be the coordinate

axis v perpendicular to u. Denote the azimuth of u
with «; and point the z axis to down, perpendicu-

larly to the plane of (xy) and (uv)!

Fig. 1 Coordinate transformation (x,y)—(u,v)

The transformation between the two systems is:

X=ucosay —vsinay }

y=usinay +vcosay

Using these equations, the first derivatives of any
function W are:
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From this first equation
W, du= (sz cosay + W, sinay )du
=W dx+W_,dy '

(dxj (cos ay j
=| . du
dy sina

If points P, and P, are close to each other as re-

because

quired, integrals on the right side of equation (2)
can be computed by the following trapezoidal inte-
gral approximation formula:

k k
J(szdx + Wzy dy) = J.qu du = SZTk[(qu )i + (qu )k ]

3)

where s;, is the horizontal distance between points
P, and P,, 4h; is the height difference between
these two points and U, is the normal value of the
vertical gradient.

U.=y LI
M N

where y =y,(1+ fsin’ ) is the normal gravity on
the ellipsoid; M and N is the curvature radius of U
in the meridian and in the prime vertical. With the
values of the Geodetic Reference System 1980, the
following holds at the surface of the ellipsoid:

U.. =3086ns>.

The value of integral (4) depends on the vertical
gradient W, and the height difference between the
points.

So, discarding the effect of (4) the differences of
gravity values between two points can be computed
by the approximate equation:

(g -8~ %"{ [07..); + (W), ] cosay

W), + (W) Isinay, |+ Ak, U
©)
If the normal value of vertical gradient U_, dif-

fers significantly from the real value, taking into
account the real value is necessary.

2 Practical solutions

If we have a large number of torsion balance meas-
urements, it is possible to form an interpolation net
(a simple example can be seen in Figure 2) for de-
termining gravity at each torsion balance points
(Volgyesi, 1993, 1995, 2001). On the basis of Eq.

®)
(gx —21)=Cy (6)

can be written between any adjacent points, where

)i + W )i

2

W) +W.
+( zy)l ( zy)k Sil’laik }
2

Cix :Sik{ CoS

(7)



n-1

P

Fig. 2 Interpolation net connecting torsion balance points

For an unambiguous interpolation it is necessary
to know the real gravity value at a few points of the
network (triangles in Figure 2). Let us see now, how
to solve interpolation for an arbitrary network with
more points than needed for an unambiguous solu-
tion, where gravity values are known. In this case
the g values can be determined by adjustment.

The question arises what data are to be consid-
ered as measurement results for adjustment: the real
torsion balance measurements W, and W, , or

C,, values from Eq. (7). Since no simple functional

relationship (observation equation) with a meas-
urement result on one side and unknowns on the
other side of an equation can be written, computa-
tion ought to be made under conditions of adjust-
ment of direct measurements, rather than with
measured unknowns — this is, however, excessively
demanding in terms of storage capacity. Hence
concerning measurements, two approximations will
be applied: on the one hand, gravity values from
measurements at the fixed points are left uncor-
rected — thus, they are input to adjustment as con-
straints — on the other hand, C, on the left hand

side of fundamental equation (6) are considered as
fictitious measurements and corrected. Thereby
observation equation (6) becomes:

Ci +vi =8k — & 3

permitting computation under conditions given by
adjusting indirect measurements between unknowns
(Detrekoi, 1991).

The first approximation is possible since reliabil-
ity of the gravity values determined from measure-
ments exceeds that of the interpolated values con-
siderably. Validity of the second approximation will
be reconsidered in connection with the problem of
weighting.

For every triangle side of the interpolation net,
observation equation (8):

Vie =&k — 8 —Ci ©

may be written. In matrix form:

v=A x+1
(m,1) (m,2n) (2n,1) (m.,1)

where A is the coefficient matrix of observation
equations, x is the vector containing unknowns g,

1 is the vector of constant terms, m is the number of
triangle sides in the interpolation net and # is the
number of points. The non-zero terms in an arbi-
trary row 7 of matrix A are:

[. 0 +1 -1 0 .]

while vector elements of constant term 1 are the
C, values.

Gravity values fixed at given points modify the
structure of observation equations. If, for instance,
g1 = 8o 1s given in (8), then the corresponding
row of matrix A is:

[. 00 -1 0 .]

the changed constant term being: C; — gy, that is

gy, and of coefficients of g, are missing from
vector x, and matrix A, respectively, while corre-
sponding terms of constant term vector 1 are
changed by a value g, .

Adjustment raises also the problem of weighting.
Fictitious measurements may only be applied, how-
ever, if certain conditions are met. The most impor-
tant condition is the deducibility of covariance
matrix of fictitious measurements from the law of
error propagation, requiring, however, a relation
yielding fictitious measurement results, — in the
actual case, Eq. (7). Among quantities on the right-
hand side of (7), torsion balance measurements
W, and W, may be considered as wrong. They

2
are about equally reliable t1E
(1E = 1E6tvés Unit =107 s %), furthermore, they may
be considered as mutually independent quantities,
thus, their weighting coefficient matrix Q,, will

be a unit matrix. With the knowledge of Q,,, , the
weighting coefficient matrix Q.. of fictitious

measurements C,, after Detrekéi (1991) is:

Q. =FQ,,F=FF
Qv =E being a unit matrix. Elements of an arbi-

. . o
trary row i of matrix F~ are:



9Cy 9Cy Cy
ow,, ) \ow,), 77 \ow, )

oC, oC, oC,
ow,, ) ow. o \ow,

zy
Y n

For the following considerations let us produce
rows f, and f, of matrix F~ (referring to sides

between points A, — P, and B, — P, respectively):
. _[ spsinay, spsina, oo 0
- ’ ’ ’ ERAER] ’
2 2
$1CO8Qy, 5, €08, 0 ]
b b b EIRAR ]
2 2
and
- S;ysina, Sy 8in ey
£ =[ , 0, ,0,0,...,0,
Sy COS 5 Sy COS 5

, 0, ,0,0,...,0 ]
2 2

Using f, , variance of C, value referring to side
B -P is:

2 2

. s
—2(2s1n2 a,, +2cos’ a,, )= %

while f, and f, yield covariance of C, values for
sides B —P, and AP,

S15813 (. .
cov = T(sm ay, sina,, +cosa,, cosa; ).

Thus, fictitious measurements may be stated to be
correlated, and the weighting coefficient matrix
contains covariance elements at the junction point
of the two sides. If needed, the weighting matrix
may be produced by inverting this weighting coeffi-
cient matrix. Practically, however, two approxima-
tions are possible: either fictitious measurements
C; are considered to be mutually independent, so

weighting matrix is a diagonal matrix; or fictitious
measurements are weighted in inverted quadratic
relation to the distance.

By assuming independent measurements, the sec-
ond approximation results also from inversion,
since terms in the main diagonal of the weighting
coefficient matrix are proportional to the square of
the side lengths. The neglection is, however, justi-
fied, in addition to the simplification of computa-
tion, also by the fact that contradictions are due less

to measurement errors than to functional errors of
the computational model (Volgyesi, 1993).

3 Test computations

Test computations were performed in a Hungarian

area extending over about 750 km” . In the last cen-
tury approximately 60000 torsion balance meas-
urements were made mainly on the flat territories of
Hungary, at present 24310 torsion balance meas-
urements are available. Location of these 24310
torsion balance observational points and the site of
the test area can be seen on Figure 3.
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Fig. 3 Torsion balance measurements being stored in com-
puter database, and the site of the test area
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Fig. 4 Gravity measurements (marked by dots) and torsion
balance points (marked by circles) on the test area

Our test area can be found nearly in the middle of
Hungary (see on Fig. 3). There were 248 torsion
balance stations and 1197 gravity measurements on
this area. 18 points from these 248 torsion balance
stations were chosen as fixed points where gravity
are known from measurements and the unknown
gravity values were interpolated on the remaining



230 points. Location of torsion balance stations
(marked by circles) and the gravity measurements
(marked by dots) can be seen on Figure 4.

Topography of the test area can be seen on fig 5,
the height difference between the lowest and high-
est points is less than 20 m.
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Fig. 6 Gravity field from g measurements on the test area
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Fig. 7 Isoline map of interpolated gravity values from hori-
zontal gradients of gravity W_ and W,

. ., measured by

torsion balance

The isoline map of gravity constructed from
1197 g measurements can be seen on Figure 6.
Small dots indicate the locations of measured grav-
ity values. Measurements were made by Worden
gravimeters, by accuracy of £20-30 pGal. At the
same time the isoline map of gravity values con-
structed from the interpolated values from 248
torsion balance measurements can be seen on Fig-
ure 7. Small circles indicate the locations of torsion
balance points.

More or less a good agreement can be seen be-
tween these two isoline maps. In order to control
the applicability and accuracy of interpolation, we
compared the given and the interpolated g values.
Gravity values were determined for each torsion
balance points from gravity measurements by linear
interpolation on the one hand and gravity values for
the same points from gravity gradients measured by
torsion balance were computed on the other. Isoline
and surface maps of differences between the two
types of g values can be seen on Figures 8 and 9.
The differences are about £1-2 mGal the maximum
difference is 6 mGal.
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Fig. 8 Isoline map of differences between the measured and
the interpolated gravity values
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Fig. 9 Surface map of differences between the measured and
the interpolated gravity values



Finally the standard error characteristic to inter-
polation, determined by

1 c me. i
mg =% ;Z(gf -,
i=1

was computed (where g;"* are from gravity meas-

urements, g}nt‘ are the interpolated values from

torsion balance measurements and »n =248 is the
number of torsion balance stations). Standard error

m, =+1.6 mGal indicates that horizontal gradients

of gravity give a possibility to determine gravity
from torsion balance measurements by mGal accu-
racy on flat areas.

It is interesting that a correlation can be found
comparing the surface map of differences between
the measured and the interpolated gravity values
(see Fig. 9) by the topography of the test area (see
Fig. 5). The biggest errors can be found at the right
side of the test area, where the biggest height differ-
ences are. In case of a not flat area accuracy of
interpolation would probably be increased by taking
into consideration the real vertical gradient values
instead of the normal one. Unfortunately we haven’t
got the real vertical gradient values at torsion bal-
ance points on our test area yet.

It would be important to investigate the effect of
vertical gradient’s value for the interpolation in the
future. The real value of W_, can be computed from

torsion balance measurements too, investigations
are going on in this respect (T6th-Volgyesi-Csapo,
2004).

Summary

A method was developed, based on integration of
horizontal gradients of gravity W, and W_, to

zy

predict gravity values at all points of the torsion
balance network. Test computations were per-

formed in a characteristic area in Hungary where
both torsion balance and gravimetric measurements
are available. Comparison of the measured and the
interpolated gravity values indicates that horizontal
gradients of gravity give a possibility to determine
gravity field from torsion balance measurements by
mGal accuracy. Accuracy of interpolation would
probably be increased by taking into consideration
the real values of vertical gradient instead of normal
one.
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