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 There is a good possibility to interpolate a dense net of deflections of the vertical from  
xxyy WW −  and  Wxy   gravity gradients measured by torsion balance and applying 

astronomical levelling to compute geoid heights. A new practical computation of 
astronomical levelling is suggested. 
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1. Introduction 
 
 Nowadays, based on the results of up-to-date geodetic measurements, contour line 
maps of the main geoid forms for the whole Earth are available. These global geoid forms 
do not contain the "fine structure" of the geoid, while we need it at least centimetres 
accuracy for practical geodetic purposes (e.g. determination of height above see level from 
GPS measurement). A dense net of deflections of the vertical, interpolated from gravity 
gradients measured by torsion balance gives us a good possibility to determine a detailed 
local geoid map. 
 
 

2. Astronomical levelling 
 

 The basic principle of astronomical levelling gives us a definite mathematical 
relationship between geoid undulations and deflections of the vertical (Biró 1982).  
According to the notations of  Fig. 1  we get 
 
 dsdN ϑ=  
 
where  ϑ  is the Pizzetti-type deflection of the vertical in the azimuth  α . 
 Between any points  1P   and  Pk   the geoid height change is 

 dssN
k

k ∫=∆
1

1 )(ϑ  (1) 

 
where  )(sϑ   is the function of deflection of the vertical in the azimuth  k1α  ,  and  s  is the 
distance between the two points. For using this line integral we would have to know the 
function of deflection of the verticals  )(sϑ   between the points. 
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Fig. 1   Basic principle of astronomical levelling 
 
 
 If  Pi   and  Pk   are close together and )(sϑ  is a linear function between these points 
the integral (1) can be evaluated by a numerical integration: 
 

 ik
ki

ik sN
2
ϑϑ +

=∆    . (2) 

 
Unfortunately in practice we have a sparser net of astronomical stations, where deflections 
of the vertical are known and )(sϑ  can not be linear between the points  Pi   and  Pk  .   So 
we need denser net of deflections of the vertical for astronomical levelling where )(sϑ  can 
be treated as linear function between neighbouring points. There is a very good possibility 
to make a denser net by interpolating deflections of the vertical between the astronomical 
points from gravity gradients where torsion balance measurements are available. 
 
 
 

3. Interpolation of deflection of the vertical 
 
 A very simple relationship based on potential theory can be written for the changes 
of  ikξ∆   and  ikη∆   between arbitrary points  i  and  k  of the deflection of the vertical 
components  ξ  and  η  as well as for gravity gradients  xxW  ,  yyW   and  xyW   measured by 
torsion balance: 
 

 ( ) ( )[ ] ( ) ( )[ ]{ }ikkxyxyixyxyikki
ik

kiikkiik

UWUWUWUW
g

s
αα

αηαξ

2cos22sin
4

cossin

−+−+−+−

=∆−∆

∆∆∆∆

  (3) 

 
where  xxyy WWW −=∆  ,  xxyy UUU −=∆  ,  iks   is the distance between points  i  and  k ,   
g  is the average value of gravity between them,   xxU  ,  yyU   and  xyU   are gravity 
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gradients in the normal gravity field, whereas  ikα   is the azimuth between the two points 
(Völgyesi 1993, 1995). Writing the left side of Eq. (3) in other form: 
 

 ( ) ( )[ ] ( ) ( )[ ]{ }ikkxyxyixyxyikki
ik

kiikikkiikik

UWUWUWUW
g

s
αα

αηαηαξαξ

2cos22sin
4

coscossinsin

−+−+−+−

=+−−

∆∆∆∆

   (4) 

 
 The computation being fundamentally an integration, practically possible only by 
approximation, in deriving  (3) or (4)  it had to be assumed that the change of gravity 
gradients between points  i  and  k , measurable by torsion balance, was linear − thus the 
equality sign in (3) or (4) is valid only for this case (Völgyesi 1993). 
 
 
 

4. Classical computation of astronomical levelling 
 
 According to Fig. 2  
 
 αηαξϑ sincos +=  
 
and using  ξ  and  η   interpolated by (4) : 
 

 ikik
ki

ik
ki

ik sN 





 +

+
+

=∆ α
ηη

α
ξξ

sin
2

cos
2

 (5) 

 
where  ikN∆   is the geoid undulation difference between points  iP   and  kP  . 
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Fig. 2. Deflection of the vertical in an arbitrary azimuth α 

 
 
 Generally we want to compute the difference  ∆N   not only between two points but 
we need a detailed geoid map for a specific territory. According to the practical work up 
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till now if we had a denser net of deflections of the vertical, and we wanted to apply 
astronomical levelling for a larger territory, we would first interpolate deflection of the 
vertical components  ξ  and  η  from an arbitrary shaped network’s points (in our case the 
torsion balance stations) to grid points of a square-shaped network. Then applying Eq. (5) 
we could compute differences of geoid heights, along grid points of the square-shaped 
network. In the north-south profiles  ο=α 0ik   hence from (5) : 
 

 ik
kiSN

ik sN 





 +

=∆ −

2
ξξ   

 
and the east-west profiles  ο=α 90ik   hence from (5) : 
 

 ik
kiWE

ik sN 





 +

=∆ −

2
ηη   . 

 
After computing all the north-south and east-west profiles we’ll get  ∆N   differences for 
each square sides. Going around each square of the square-shaped network the sum of   
∆N   differences for the four square sides must be zero. E.g. on Fig.3 for the jth square: 
 
 0321 =∆+∆+∆+∆ →

+
→
+

→
+
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Fig. 3. Summing up N∆ differences for square sides 
 
 
If the sum is not zero, these misclosures can be adjusted as if they were the misclosures of 
the well known geometrical levelling. Results of this computation will be the adjusted  ∆N   
differences between the adjacent square-shaped grid points. 
 If an initial geoid height  1N   is given at an arbitrary point of the grid we can get 
the final geoid heights  Ni   at point  i ,  summing up the corresponding  ∆N   differences. 
 Another solution using a least-squares surface fitting technique was made by 
(Vanicek P and Merry C L, 1993). 
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5. Practical computation of local geoid heights 
 

 There are two main problems of the classical computation of astronomical 
levelling. There will be a loss of accuracy of computed  ξ , η  values interpolating them 
from a network of points having arbitrary shape to grid points of a square-shaped network 
in one respect, and there are too many unknowns without reason considering geoid height 
changes  ∆N  between network points as unknowns instead of direct geoid heights  N  for 
each points as unknowns on the other hand (Völgyesi, 1998). 
 The first problem can be solved using the original torsion balance measurement 
points directly for the geoid computation instead of regular grid points. In this case we use 
a net of triangles instead of squares, and (5) gives the relationship between components of 
deflection of the vertical  ξ , η  and the geoid height change  ∆N   for each triangle sides in 
an arbitrary azimuth  α . 

The second difficulty may be overcome by considering  N  values of geoid heights 
directly as unknowns instead of differences  ∆N  for the same arbitrary network points. 
Accordingly, let us transform (5) by substituting: 
 

kiik NNN −=∆  
to 

 ikik
ki

ik
ki

ik sNN 





 +

+
+

=− α
ηη

α
ξξ sin

2
cos

2
  . (7) 

 
This significantly reduces the number of unknowns, namely, there will be one unknown for 
each point rather than per side. In an arbitrary network, there are much less of points than 
of sides, since according to the classic principle of triangulation, every new point joins the 
existing network by two sides. For a homogeneous triangulation network, the   side/point  
ratio may be higher than two. There are another advantages of this solution, e.g. that there 
is no requirement for writing constraining conditions (6) for the triangles, they being 
contained in the established observation equations (7). For an interpolation net with  m 
points with known values of geoid heights, with the relevant constraints the number of 
unknowns may be further reduced, with an additional size reduction of the matrix of 
normal equations. 
 

Let us see now, how to complete computation for an arbitrary network with more 
points than needed for an unambiguous solution, where initial geoid heights are known. In 
this case the unknown  N  values are determined by adjustment. Relation between 
components of deflection of the vertical  ξ , η  and unknown  N  values of geoid heights is 
obtained from (7), where 
 

 ikik
ki

ik
ki

ik sC 
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+
+

= α
ηη

α
ξξ sin

2
cos

2
 (8) 

 
is constant for each triangle side. The question arises what data are to be considered as 
measurement results for adjustment: the components of deflection of the vertical  ξ and η,  
or  ikC   values from (8). Since no simple relationship (observation equation) with a 
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measurement result on one side, and unknowns on the other side of an equation can be 
written, computation ought to be made under conditions of adjustment of direct 
measurements, rather than with measured unknowns - this is, however, excessively 
demanding for computation, requiring excessive storage capacity. Hence concerning 
measurements, two approximations can be applied: given geoid heights are left 
uncorrected on the one hand - thus, they are input to adjustment as constraints,  ikC   on the 
left hand side of fundamental equation (8) are considered as fictitious measurements and 
corrected on the other hand. Thereby observation equation (7) becomes: 
 
 ikikik NNvC −=+  (9) 
 
permitting computation under conditions given by adjusting indirect measurements 
between unknowns. 
 

The first approximation is justified since reliability of given  N  values exceeds that 
of the computed values considerably (a principle applied also to geodetic basic networks). 
Validity of the second approximation will be addressed later in connection with the 
problem of weighting. 

For every triangle side of the interpolated net, observation equation based on   Eq. 
(9): 

 
 ikikik CNNv −−=  (10) 
 
may be written. In matrix form: 
 
 

)1,()1,(),()1,( mnnmm
lxAv +=  

 
where  A  is the coefficient matrix of observation equations, x  is the vector containing 
unknowns  N,  l  is the vector of constant terms;  m  is the number of sides in the 
interpolation net; and  n  is the number of points. An arbitrary row  i  of matrix  A  is very 
simple: 
 
 [ ]00...01...10...00 −+  
 
while vector elements of constant term  l  are the  ikC   values. 
 

Adjustment raises also the problem of weighting. Earlier the approximation 
comprised - rather than direct deflection of the vertical components  ξ  and  η   - fictive 
measurements produced from them. Fictive measurements may only be applied, however, 
if certain conditions are met. The most important condition is the deducibility of 
covariance matrix of fictive measurements from the law of error propagation, requiring, 
however, a relation yielding fictitious measurement results, - in the actual case, Eq. (8). 
Among quantities on the right-hand side of (8), deflection of the vertical components  ξ  
and  η   may be considered as erroneous. They are about equally reliable  ( 6.0 ′′± ), 
furthermore, they may be considered as mutually independent quantities, thus, their 
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cofactor matrix   ξηQ    will be a unit matrix. With the knowledge of   ξηQ  ,  cofactor 
matrix   CCQ    of fictitious measurements  ikC   (Detrekői 1991) is: 
 
 FFFQFQ **

CC == ξη  
 

EQ =ξη    being a unit matrix. Elements of an arbitrary row  i  of matrix   *F    are: 
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For the following considerations let us produce rows   *

1f    and   *f2    of matrix   *F    
(referring to sides between points   21 PP −    and   31 PP −    respectively): 
 

( )



= ,0,...,0,0,sin,sin,0,...,0,0cos,cos

2 1212,1212
12 αααα

s*
1f  

and 

 ( )



= ,0,...,0,sin,0,sin,0,...,0cos,0,cos

2 1313,1313
13

2 αααα
s*f   . 

 
Using   *

1f  ,  variance of  C  value referring to side   21 PP −    is: 
 

 ( )
2

cos2sin2
4

2
12

12
2

12
2

2
122 ssm =+= αα  

 
while   *

1f    and   *f2    yield covariance of  C  values for sides   21 PP −    and   31 PP −  : 
 

 ( )13121312
1312 coscossinsin

4
cov αααα +=

ss
  . 

 
Thus, fictitious measurements may be stated to be correlated, and the cofactor matrix 
contains covariance elements at the junction point of the two sides. If needed, the 
weighting matrix may be produced by inverting this cofactor matrix. Practically, however, 
two approximations are possible: either fictitious measurements  C  are considered to be 
mutually independent, so weighting matrix is a diagonal matrix; or fictitious measurements 
are weighted in inverted quadratic relation to the distance. 

By assuming independent measurements, the second approximation comes also 
from inversion, since terms in the main diagonal of the cofactor matrix are proportional to 
the square of the side lengths. The neglection is, however, justified, in addition to the 
simplification of computation, also by the fact that contradictions are due less to 
measurement errors rather than to functional errors of the computational model. 
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6. Test computations 
 
 By a computer program package developed by us we are able to determine 
deflections of the vertical based on torsion balance measurements and  computes geoid 
heights by astronomical levelling. A characteristic area surrounding Cegléd in Hungary 
measured by torsion balance, extending over some  1200 km2 ,  was chosen for the purpose 
of test computation. The torsion balance stations were not located with the same density 
because the observations were carried out with a greater density of points in "disturbed" 
areas of rugged topography. The interpolation network has 203 points with unknown 
deflections of the vertical and geoid undulations, and there are 6 points where absolute  x ,  
h  and  N  values are known on this area of investigation, referring to GRS80 system. (3 
points are for the initial data of interpolations, and 3 points are for checking of the 
computations.) 
 According to our earlier investigations, standard deviations  06.0 ′′±=ξm   and  

56.0 ′′±=ηm , computed from the differences at checkpoints corroborate the fact that even 
for large continuous territories  x , h  values of acceptable accuracy can be computed from 
torsion balance measurements (Völgyesi 1995). 
 Based on our previously interpolated deflection of the vertical components, geoid 
computations were carried out. The purpose of this test computations is to prove, that the 
accuracy of Geoid heights computed directly on the arbitrary-shaped network of torsion 
balance stations is higher than the accuracy of computed values from deflections of the 
vertical interpolated on a regular square-shaped network points. 
 It is required to chose an initial point  1P   for geoid computations, where an initial 
geoid height  1N   is given. The astrogeodetic point  SZOL  was chosen for this purpose at 
the upper part of our test territory, where  mN 74.421 = ,  referring to GRS80 system. 
Points  13, 14 and 27  are for checking of computations, geoid heights are given at this 
points referring to GRS80 system too. A geoid map can be seen on  Fig. 4  computed from 
deflections of the vertical interpolated on a regular square-shaped network, while another 
geoid map can be seen on  Fig. 5  computed directly on the arbitrary-shaped network of 
torsion balance stations. In  Table I  the given geoid heights of the three check points has 
been compared to the values computed by the two different methods. The given geoid 
heights of check points can be found in the 2nd column of  Table I , geoid heights of 
version1 computed from deflections of the vertical interpolated on a regular square-shaped 
network points can be found in the 3rd column, differences between these and the given 
values are in the 4th column, geoid heights of version2 computed directly on the arbitrary-
shaped network of torsion balance stations can be found in the 5th column, differences 
between these and the given values are in the 6th column. It can be stated on the basis of 
test computations, that the accuracy of geoid heights computed directly on the arbitrary-
shaped network of torsion balance stations is higher than the accuracy of computed values 
from deflections of the vertical interpolated on a regular square-shaped network points - 
according to our theoretical considerations. The mean error of geoid heights of version1 is  
±0.13m  and version2 is  ±0.04m,  and the new geoid map contains more tiny details of 
local geoid forms. 
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Fig. 4. Geoid map computed from deflections of the vertical interpolated on a regular 
square-shaped network points 

 
 
 

680000 690000 700000 710000 720000

190000

200000

210000

SZOL

ABON

ERDO

13

14

27

288314
316
318320411 413

415
417

419

420

421
422

423 424
426427 428

430

432
434

438440

518

553

570

574575

576577578579

594

595596

597598

607

608

609

610

611 612

613

614

615

616

617

619

620621

622623

624

625

630

631

632 633

636

637

638

639 640

641

666

676

686

692

694

695

696

697

698

699

700

701703

704

705

706707

709

710

711712713

714 715

716717

718

719

720

721722

723724725726727728

729

730

731 732735

736737

745

746747748

749

750

751 752

753

754

755756

757

758 759

760

761

762

763

764

765

766

767 769

770

771

772

773774

775776
777

779

785

786

787788

789

796

797

798

802

803

804

805

806

807

808

810

811

812813

814

815

816

817

818819

820

821

852

853

855

872876

5876

5878

59305931

59335934

5935 5936

5937
5938

5939 5940

5944

5945 5946

5947

5949

5950
5951

5952

5953

5954

5955

5956

5957

5958

 
 

Fig. 5. Geoid map computed directly on the arbitrary-shaped network points of torsion 
balance stations 
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Table I.  Comparison of the two computation method. 
 

Check 
points 

Given 
N 

[m] 

 Computed 
Version1 

[m] 

Difference 
(V.1-N) 

[m] 

 Computed 
Version2 

[m] 

Difference 
(V.2-N) 

[m] 
13 42.72  42.80 0.08  42.66 -0.06 
14 42.85  43.00 0.15  42.90 0.05 
27 42.58  42.74 0.16  42.58 0.00 
    ±0.13   ±0.04 

 
 
 We are going to make further detailed investigations on other test territories to 
compare the two computation method. 
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