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There is a good possibility to interpolate a dense net of deflections of the vertical from
W,—-W, and W,  gravity gradients measured by torsion balance and applying

astronomical levelling to compute geoid heights. A new practical computation of
astronomical levelling is suggested.
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1. Introduction

Nowadays, based on the results of up-to-date geodetic measurements, contour line
maps of the main geoid forms for the whole Earth are available. These global geoid forms
do not contain the "fine structure" of the geoid, while we need it at least centimetres
accuracy for practical geodetic purposes (e.g. determination of height above see level from
GPS measurement). A dense net of deflections of the vertical, interpolated from gravity
gradients measured by torsion balance gives us a good possibility to determine a detailed
local geoid map.

2. Astronomical levelling

The basic principle of astronomical levelling gives us a definite mathematical
relationship between geoid undulations and deflections of the vertical (Bird 1982).
According to the notations of Fig. I we get

dN = 9ds

where 4 is the Pizzetti-type deflection of the vertical in the azimuth « .
Between any points A and P, the geoid height change is

AN, = j&(s)ds (1)

where 3(s) is the function of deflection of the vertical in the azimuth a,, , and s is the

distance between the two points. For using this line integral we would have to know the
function of deflection of the verticals 3(s) between the points.



Fig. 1 Basic principle of astronomical levelling

If P and P, are close together and 9(s) is a linear function between these points
the integral (1) can be evaluated by a numerical integration:

AN, =—"—F%s, . )

Unfortunately in practice we have a sparser net of astronomical stations, where deflections
of the vertical are known and 9(s) can not be linear between the points £ and P, . So

we need denser net of deflections of the vertical for astronomical levelling where 3(s) can

be treated as linear function between neighbouring points. There is a very good possibility
to make a denser net by interpolating deflections of the vertical between the astronomical
points from gravity gradients where torsion balance measurements are available.

3. Interpolation of deflection of the vertical

A very simple relationship based on potential theory can be written for the changes
of A&, and Ap, between arbitrary points i and k of the deflection of the vertical

components & and 77 as well as for gravity gradients W, W and W, measured by

torsion balance:

A¢, sina,;, —An, cosa,, =

A 3
:';; {[(WA - UA )i i (WA B UA )k ]Sin 2aik + [(ny - ny )i + (W'cy - ny )k ]2 cos 205ik } )

s, 1s the distance between points i and £,

xx xx

where W, =W,k -W, u,=U,-U

g s the average value of gravity between them, U, , U, and U, are gravity



gradients in the normal gravity field, whereas o, is the azimuth between the two points
(Volgyesi 1993, 1995). Writing the left side of Eq. (3) in other form:

& sina,;, =& sina,, —n, cosq,, +1,cosq,, =

(4)

i

% {[(WA - UA )i + (WA - UA )k ]Sin Zal'k + [(ny - ny ) + (ny - ny )k ]2 CcosS 2aik }

The computation being fundamentally an integration, practically possible only by
approximation, in deriving (3) or (4) it had to be assumed that the change of gravity
gradients between points i and k&, measurable by torsion balance, was linear — thus the
equality sign in (3) or (4) is valid only for this case (Volgyesi 1993).

4. Classical computation of astronomical levelling
According to Fig. 2
F=~Ecosa+msina
and using & and 7 interpolated by (4) :

ik

-+ /I
= (%cos a, +%sm aikjsik (5)

where AN, is the geoid undulation difference between points P, and P, .

Pi 77i y

Fig. 2. Deflection of the vertical in an arbitrary azimuth o

Generally we want to compute the difference AN not only between two points but
we need a detailed geoid map for a specific territory. According to the practical work up



till now if we had a denser net of deflections of the vertical, and we wanted to apply
astronomical levelling for a larger territory, we would first interpolate deflection of the
vertical components & and 7 from an arbitrary shaped network’s points (in our case the
torsion balance stations) to grid points of a square-shaped network. Then applying Eq. (5)
we could compute differences of geoid heights, along grid points of the square-shaped
network. In the north-south profiles o, =0° hence from (5) :

AN[]]zlfs — [él —;gk Jsik

and the east-west profiles o, =90° hence from (5) :

L.

After computing all the north-south and east-west profiles we’ll get AN differences for
each square sides. Going around each square of the square-shaped network the sum of
AN differences for the four square sides must be zero. E.g. on Fig.3 for the jth square:

ANT?E+ AN TS + AN " + ANV =0 (6)
ﬂ’i ﬂ’i+1
W —>E
[ANT P
k
S—N]| : N->S
ANj+3 @ ANj+1
> @
E—->WwW k+1
ANj+2

Fig. 3. Summing up AN differences for square sides

If the sum is not zero, these misclosures can be adjusted as if they were the misclosures of
the well known geometrical levelling. Results of this computation will be the adjusted AN
differences between the adjacent square-shaped grid points.

If an initial geoid height N, is given at an arbitrary point of the grid we can get
the final geoid heights N, at point i, summing up the corresponding AN differences.

Another solution using a least-squares surface fitting technique was made by
(Vanicek P and Merry C L, 1993).



5. Practical computation of local geoid heights

There are two main problems of the classical computation of astronomical
levelling. There will be a loss of accuracy of computed &, 7 values interpolating them
from a network of points having arbitrary shape to grid points of a square-shaped network
in one respect, and there are too many unknowns without reason considering geoid height
changes AN between network points as unknowns instead of direct geoid heights N for
each points as unknowns on the other hand (Volgyesi, 1998).

The first problem can be solved using the original torsion balance measurement
points directly for the geoid computation instead of regular grid points. In this case we use
a net of triangles instead of squares, and (5) gives the relationship between components of
deflection of the vertical &, 1 and the geoid height change AN for each triangle sides in
an arbitrary azimuth « .

The second difficulty may be overcome by considering N values of geoid heights
directly as unknowns instead of differences AN for the same arbitrary network points.
Accordingly, let us transform (5) by substituting:

AN, =N, - N,
to

N, =N, :[%cosaik +%sinaikjsik . (7

This significantly reduces the number of unknowns, namely, there will be one unknown for
each point rather than per side. In an arbitrary network, there are much less of points than
of sides, since according to the classic principle of triangulation, every new point joins the
existing network by two sides. For a homogeneous triangulation network, the side/point
ratio may be higher than two. There are another advantages of this solution, e.g. that there
i1s no requirement for writing constraining conditions (6) for the triangles, they being
contained in the established observation equations (7). For an interpolation net with m
points with known values of geoid heights, with the relevant constraints the number of
unknowns may be further reduced, with an additional size reduction of the matrix of
normal equations.

Let us see now, how to complete computation for an arbitrary network with more
points than needed for an unambiguous solution, where initial geoid heights are known. In
this case the unknown N values are determined by adjustment. Relation between
components of deflection of the vertical &, 77 and unknown N values of geoid heights is
obtained from (7), where

C, = (% cosa,, + mesin aik)sik ()

is constant for each triangle side. The question arises what data are to be considered as
measurement results for adjustment: the components of deflection of the vertical & and 7,
or C, values from (8). Since no simple relationship (observation equation) with a



measurement result on one side, and unknowns on the other side of an equation can be
written, computation ought to be made under conditions of adjustment of direct
measurements, rather than with measured unknowns - this is, however, excessively
demanding for computation, requiring excessive storage capacity. Hence concerning
measurements, two approximations can be applied: given geoid heights are left
uncorrected on the one hand - thus, they are input to adjustment as constraints, C, on the

left hand side of fundamental equation (8) are considered as fictitious measurements and
corrected on the other hand. Thereby observation equation (7) becomes:

Cik+vik=Nk_Ni )

permitting computation under conditions given by adjusting indirect measurements
between unknowns.

The first approximation is justified since reliability of given N values exceeds that
of the computed values considerably (a principle applied also to geodetic basic networks).
Validity of the second approximation will be addressed later in connection with the
problem of weighting.

For every triangle side of the interpolated net, observation equation based on Eq.

(9):

Vi =N, =N, =Cy (10)
may be written. In matrix form:

v=A x+ |
(m,1) (m,n)(n,1) (m,])

where A is the coefficient matrix of observation equations, x is the vector containing
unknowns N, 1 is the vector of constant terms; m is the number of sides in the
interpolation net; and » is the number of points. An arbitrary row i of matrix A is very
simple:

[ 00 .. 0 +1 .. -1 0 .. 0 0 ]

while vector elements of constant term 1 are the C, values.

Adjustment raises also the problem of weighting. Earlier the approximation
comprised - rather than direct deflection of the vertical components & and 7 - fictive
measurements produced from them. Fictive measurements may only be applied, however,
if certain conditions are met. The most important condition is the deducibility of
covariance matrix of fictive measurements from the law of error propagation, requiring,
however, a relation yielding fictitious measurement results, - in the actual case, Eq. (8).
Among quantities on the right-hand side of (8), deflection of the vertical components &
and 7 may be considered as erroneous. They are about equally reliable (£0.6"),
furthermore, they may be considered as mutually independent quantities, thus, their



cofactor matrix Q. will be a unit matrix. With the knowledge of Q cofactor

&n 2
matrix Q. of fictitious measurements C, (Detrekdi 1991) is:

QCC = F*QQTIF = F*F
Q. =E being a unit matrix. Elements of an arbitrary row i of matrix F* are:
=) ) - E & (& 5
o ). o ), yeees ) on ). on ), R ,,

For the following considerations let us produce rows f, and f, of matrix F

(referring to sides between points P, — P, and P, —P, respectively):

* S . .
f, = ?2(0050:12 ,cosa, 0,0,..,0,smne,,sine,;,,0,0,...,0, )}

and

* S . .
f, = f(cosoz13 ,0,cosar; 0,...,0,sine; ,0,sine;;,0,...,0, )}

Using f, , variance of C value referring to side P —P, is:

2
S .
m’ =-12 (2s1n2 a,, +2cos’ 0512)2
4

LS

Sy

2

S8}

while f, and f, yield covariance of C values forsides P —P, and P —P, :

S8 (. .
cov = 4 (sine, sina,, +cosa,, cosa,y) -

Thus, fictitious measurements may be stated to be correlated, and the cofactor matrix
contains covariance elements at the junction point of the two sides. If needed, the
weighting matrix may be produced by inverting this cofactor matrix. Practically, however,
two approximations are possible: either fictitious measurements C are considered to be
mutually independent, so weighting matrix is a diagonal matrix; or fictitious measurements
are weighted in inverted quadratic relation to the distance.

By assuming independent measurements, the second approximation comes also
from inversion, since terms in the main diagonal of the cofactor matrix are proportional to
the square of the side lengths. The neglection is, however, justified, in addition to the
simplification of computation, also by the fact that contradictions are due less to
measurement errors rather than to functional errors of the computational model.



6. Test computations

By a computer program package developed by us we are able to determine
deflections of the vertical based on torsion balance measurements and computes geoid
heights by astronomical levelling. A characteristic area surrounding Cegléd in Hungary
measured by torsion balance, extending over some 1200 km*, was chosen for the purpose
of test computation. The torsion balance stations were not located with the same density
because the observations were carried out with a greater density of points in "disturbed"
areas of rugged topography. The interpolation network has 203 points with unknown
deflections of the vertical and geoid undulations, and there are 6 points where absolute x,
h and N values are known on this area of investigation, referring to GRS80 system. (3
points are for the initial data of interpolations, and 3 points are for checking of the
computations.)

According to our earlier investigations, standard deviations m, =+0.60" and

m, =+0.65", computed from the differences at checkpoints corroborate the fact that even

for large continuous territories x, # values of acceptable accuracy can be computed from
torsion balance measurements (Volgyesi 1995).

Based on our previously interpolated deflection of the vertical components, geoid
computations were carried out. The purpose of this test computations is to prove, that the
accuracy of Geoid heights computed directly on the arbitrary-shaped network of torsion
balance stations is higher than the accuracy of computed values from deflections of the
vertical interpolated on a regular square-shaped network points.

It is required to chose an initial point F, for geoid computations, where an initial

geoid height N, i1s given. The astrogeodetic point SZOL was chosen for this purpose at
the upper part of our test territory, where N, =42.74m, referring to GRS80 system.

Points 73, 14 and 27 are for checking of computations, geoid heights are given at this
points referring to GRS80 system too. A geoid map can be seen on Fig. 4 computed from
deflections of the vertical interpolated on a regular square-shaped network, while another
geoid map can be seen on Fig. 5 computed directly on the arbitrary-shaped network of
torsion balance stations. In 7able I the given geoid heights of the three check points has
been compared to the values computed by the two different methods. The given geoid
heights of check points can be found in the 2nd column of 7able I , geoid heights of
versionl computed from deflections of the vertical interpolated on a regular square-shaped
network points can be found in the 3rd column, differences between these and the given
values are in the 4th column, geoid heights of version2 computed directly on the arbitrary-
shaped network of torsion balance stations can be found in the 5th column, differences
between these and the given values are in the 6th column. It can be stated on the basis of
test computations, that the accuracy of geoid heights computed directly on the arbitrary-
shaped network of torsion balance stations is higher than the accuracy of computed values
from deflections of the vertical interpolated on a regular square-shaped network points -
according to our theoretical considerations. The mean error of geoid heights of versionl is
+0.13m and version2 is +£0.04m, and the new geoid map contains more tiny details of
local geoid forms.
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Fig. 4. Geoid map computed from deflections of the vertical interpolated on a regular
square-shaped network points
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Fig. 5. Geoid map computed directly on the arbitrary-shaped network points of torsion
balance stations



Table I. Comparison of the two computation method.

Check  Given Computed Difference Computed Difference
points N Versionl (V.1-N) Version2 (V.2-N)
[m] [m] [m] [m] [m]
13 42.72 42.80 0.08 42.66 -0.06
14 42.85 43.00 0.15 42.90 0.05
27 42.58 42.74 0.16 42.58 0.00
+0.13 +0.04

We are going to make further detailed investigations on other test territories to
compare the two computation method.
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