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All the elements of the Eötvös tensor can be measured by torsion balance, except the 
vertical gradient. The knowledge of the real value of the vertical gradient is more and more 
important in gravimetry and geodesy.  

Determination of the 3D gravity potential W(x,y,z) can be produced by inversion 
reconstruction based on each of the gravity data Wx (= g) measured by gravimeters and gravity 
gradients Wzx, Wzy, WΔ, Wxy measured by torsion balance. Besides vertical gradients Wzz 
measured directly by gravimeters have to be used as reference values at some points. First 
derivatives of the potential Wx, Wy (can be derived from the components of deflection of the 
vertical) may be useful for the joint inversion too. Determination of the potential function has a 
great importance because all components of the gravity vector and the elements of the full 
Eötvös tensor can be derived from it as the first and the second derivatives of this function. The 
second derivatives of the potential function give the elements of the full Eötvös-tensor 
including the vertical gradients, and all these elements can be determined not only in the 
torsion balance stations, but anywhere in the surroundings of these points. 

Test computations were performed at the characteristic region of a Hungarian plate area at 
the south part of the Csepel-island where torsion balance and vertical gradient measurements 
are available. There were about 30 torsion balance, 21 gravity and 27 vertical gradient 
measurements in our test area. Only a part of the 27 vertical gradient values was used as initial 
data for the inversion and the remaining part of these points were used for controlling the 
computation. 
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1. Introduction 

In the last century approximately 60000 torsion balance measurements were made 
mainly for geophysical prospecting in Hungary. More than two third part of this 
measurements is in digital database and available for the immediate applications. In 
recent years, there was a demand for the geodetic application of these torsion balance 
measurements (Völgyesi et al, 2005). The curvature gradients WΔ and Wxy can be used 
for interpolation of the deflection of the vertical and determination of the fine structure 
of the geoid (Völgyesi, 2001, 2005). The horizontal gradients Wzx and Wzy and the 
curvature gradients WΔ and Wxy measured by torsion balance can be used for the 
determination of the vertical gradients. The first method was developed by Haalck 
(1950), but his method seemed to be too sensitive to the not linear changing of the 
horizontal and curvature gradients between the neighbouring torsion balance points 
(Ultmann, 2012). A new possibility for the determination of the vertical gradients is the 
application of the inversion reconstruction of the gravity potential based on torsion 
balance measurements (Dodróka and Völgyesi, 2008a, 2008b). First the main principle 
of the inversion algorithm is discussed here, and than test computation shows the 
application of this method. 

2. The 3D inversion algorithm 

Let us choose the 3D gravity potential ),,( zyxW as an expansion in a series of a 

known set of basis function PΨΨ ....1 : 
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where yxx NNkNjil **)1(*)1( −+−+=  and jB  are unknown coefficients of the 

expansion in a series. In our computations Legendre polinomials are applied as the basis 
functions. The constant term is marked by index 1, so the possibility of i=j=k=1 can be 
precluded, because the potential is unequivocal apart from an additive constant. 

The second derivatives of the potential (1) give the computed values of the 
horizontal gradients zxW , zyW  and the curvature data ΔW , xyW , as 
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where the prime “ ' ” denotes differentiation with respect the variable of the basis 
function. These are the gradients, which can be measured by torsion balance. The 
vertical gradients can be computed as 
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and the first derivatives: 
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where Wz = g is the gravity, xx UgW +−= ξ , yy UgW +−= η  can be computed from 

the components of the deflection of the vertical ξ and η, (U is the normal potential) . 
Let’s introduce the notations at the q-s measurement point ),,( qqq zyx :  
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so the computable torsion balance data, vertical gradients and the computable first 
derivative data at the same point:  
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where 1−= zyx NNNM  is the number of coefficients of the series expansion, and 

qlqlqlqlqlqlqlql SRQPFDCA ,,,,,,,  are computable and known matrix elements at the 

qth measurement point. All the values of (10) - (17) can be written to a single coefficient 
matrix (so called Jacobi matrix) 
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Let us introduce the vector notations for the measured quantities: 
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and for the computed data: 
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using eqs. (18) - (25). The vector of computed data takes the form  

 GBd =.comp . (29) 

The qth element of the discrepancy vector of the measured and the computed data: 
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Let our inverse problem be overdetermined and let the function have to be 
minimized the norm 2L  of the discrepancy vector: 
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The discrepancy vector of the measured and the computed data: 

 GBde −= meas , (39) 

and substituting this into (38):  
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for the vectorial discussion, where 
=

=
8

1s
sNN , the total number of the measured data. 

It is well-known, that the potential field should fulfill the Laplace equation 
0Δ =++= zzyyxx WWWW  at the (free air) measurement points. The computed value of 

WΔ can be written as 
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or introducing the notation at the qth measurement pont ( 9,...,2,1 Nq = , here 9N  is the 

number of the points, where 0Δ =W  is required) 

 
)()()()()()(

)()()(

''''

''

qkqjqiqkqjqi

qkqjqiql

zΨyΨxΨzΨyΨxΨ

zΨyΨxΨH

++

=
 (42) 

the computable value of WΔ can be written as  
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In order to take into account these restrictions, we extend the data structures in eqs. 
(27) and (28) so, that 
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Denoting the extended Jacobi matrix as 
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the extended discrepancy vector of the measured and the computed data: 

 GBde −= meas
ext ext.. , (47) 

and the new functional to be minimized is 
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The solution of this inverse problem is based on the condition system 
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resulting in the set of normal equations 
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So this inverse problem is linear, vector B of expansion in a series’ coefficients can 
be determined by solving the above set of equations 
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So the potential function − apart from an additive constant − can be determined at 
any points of the region covered by torsion balance measurements using the coefficients 
of expansion in a series of a known set of basis function. 

3. Test computations 

For checking of the 3D inversion algorithm test computations were performed at the 
region of the south part of the Csepel-island where torsion balance and vertical gradient 
measurements are available. This test area is a characteristic region of a Hungarian plate 
area. Both topographic conditions and the density of the torsion balance points are 
similar to the average conditions in Hungary. Earlier torsion balance measurements 
were made here in 1950 for geophysical prospecting, the average distance between the 
points was about 1-1.5 km. Since the original point density was not enough for our 
investigations, new torsion balance measurements were made, completed by vertical 
gradient measurements. The new measurements were made by the support of the OTKA 
project K60657 managed by G. Csapó between 2006 and 2010 (Csapó et al, 2009a, 
2009b). Location of the 4 earlier torsion balance measurement points are marked by 
squares, the new 30 torsion balance points marked by circles, and the 21 gravity 
measurements are marked by crosses on Fig. 1. Torsion balance points marked by light 
and dark circles were measured in 2007 and in 2008 respectively. The 27 vertical 
gradient measurement points can be seen on Fig. 2, the structure and the spatial 
distribution of the values of vertical gradients is illustrated by isolines. The values of the 
isolines on the Fig. 2 is in [mGal/m] (1 [mGal/m] = 10-5 [1/s2] = 10000 [E] =10000 
Eötvös Unit), coordinates are in meters in the Hungarian Unified National Projections 
(EOV) system. 



 

 
Fig. 1. Torsion balance stations (marked by squares and circles) and gravity measurements 

(marked by crosses) on the test area. 

 
Fig. 2. Vertical gradient measurements on the test area. The Wzz values are in mGal/m, 

coordinates are in meters in the Hungarian EOV system 



 
Fig. 3. Isoline map of the horizontal gradients measured by torsion balance. 

Isoline values are in [E] (1 E = 1Eötvös Unit = 10−9 s−2) 

 
Fig. 4. Isoline map of the curvature gradients measured by torsion balance. 

Isoline values are in [E] (1 E = 1Eötvös Unit = 10−9 s−2) 
 
On the solution of the inversion problem all the coefficients were determined which 

are necessary for the computation, and all the second derivatives of the potential 
function were computed by joint inversion for the whole test area. On Figs. 3 and 4 
isoline map of horizontal gradients Wzx and Wzy, and curvature gradients Wxy and ΔW  

can be seen respectively (isoline values are in [E] (1 E = 1Eötvös Unit = 10−9 s−2). 
Comparing the torsion balance measurements to the computed horizontal and curvature 



gradient data very good agreement can be found. All these gradients from the joint 
inversion computation are equal within 0.1E accuracy to the measured data and we get 
the same isoline pictures for the computed gradients as can be seen on Figs. 3 and 4. 

In the knowledge of the expansion coefficients, it is also possible to compute the 
potential field and further first and second derivatives of the potential function by using 
the expansion formula. So, there is a possibility to determine the vertical gradients Wzz 
from joint inversion in spite of the fact that vertical gradient can not be measured 
directly by the torsion balance. 

For the vertical gradient computation only a part of the measured 27 vertical 
gradient values was used as initial data for the joint inversion and the remaining part of 
the points were used for controlling the computation. As it can be seen on Fig. 5 
altogether 21 from the whole 27 points marked by dots was chosen as initial data for the 
inversion computation and the remaining 6 points marked by crosses were used for 
controlling the results. 

 

 

Fig. 5. Computed vertical gradients zzW  from the joint inversion, values are in mGal/m 

 
Comparing the measured vertical gradient data to the computed value at the 6 

controlling point differences are summarize in Table 1. The root mean square of the 
differences is ±11.6 μGal/m, which is the order of magnitude of the measurements of the 
vertical gradient. So this is a strong demostration of the applicability of the inversion 
reconstruction of the gravity potential for the determination of the vertical gradients 
based on torsion balance data. 

 



 

Table 1. Measured and computed data at the controlling points. 

Point 
measured Wzz 

[mGal/m] 
computed Wzz 

[mGal/m] 
difference 
[μGal/m] 

1.1 -0.3078 -0.2967 11.2 
1.4 -0.3001 -0.3036 -15.6 
2.3 -0.3049 -0.2943 16.7 

23.4 -0.3042 -0.3062 -0.1 
3.35 -0.3164 -0.3097 1.5 
3.45 -0.3172 -0.3063 12.3 

   RMS =11.6 

4. Conclusion 

The presented 3D inversion reconstruction method gives possibility for the 
determination of the gravity potential function by joint inversion using a large number of 
torsion balance and gravity data completed a few astronomical (deflection of the 
vertical) and digital terrain model data.  

Different important data fields, all the first and the second derivatives of the 
potential (the full Eövös-tensor, deflections of the vertical, vertical gradients) can be 
originated from this reconstructed potential function, not only in the torsion balance 
points but in their surroundings too (at any points of the investigated area). 

This method gives a new possibility to transform the torsion balance measurements 
to different heights and the analytical determination of the geoid surface. 

Our investigations haven’t yet finished, several questions of detail need to be 
solved, but the 3D inversion method is working demonstrably well and can be used for 
the determination of the vertical gradients based on torsion balance measurements 
completed by different gravity data. 
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