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All the elements of the Eotvos tensor can be measured by torsion balance, except the
vertical gradient. The knowledge of the real value of the vertical gradient is more and more
important in gravimetry and geodesy.

Determination of the 3D gravity potential W#(x,y,z) can be produced by inversion
reconstruction based on each of the gravity data W, (= g) measured by gravimeters and gravity
gradients W.., W.,, Wa, W, measured by torsion balance. Besides vertical gradients W..
measured directly by gravimeters have to be used as reference values at some points. First
derivatives of the potential W,, W, (can be derived from the components of deflection of the
vertical) may be useful for the joint inversion too. Determination of the potential function has a
great importance because all components of the gravity vector and the elements of the full
Eotvos tensor can be derived from it as the first and the second derivatives of this function. The
second derivatives of the potential function give the elements of the full Eotvos-tensor
including the vertical gradients, and all these elements can be determined not only in the
torsion balance stations, but anywhere in the surroundings of these points.

Test computations were performed at the characteristic region of a Hungarian plate area at
the south part of the Csepel-island where torsion balance and vertical gradient measurements
are available. There were about 30 torsion balance, 21 gravity and 27 vertical gradient
measurements in our test area. Only a part of the 27 vertical gradient values was used as initial
data for the inversion and the remaining part of these points were used for controlling the
computation.
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1. Introduction

In the last century approximately 60000 torsion balance measurements were made
mainly for geophysical prospecting in Hungary. More than two third part of this
measurements is in digital database and available for the immediate applications. In
recent years, there was a demand for the geodetic application of these torsion balance
measurements (Volgyesi et al, 2005). The curvature gradients W, and W,, can be used
for interpolation of the deflection of the vertical and determination of the fine structure
of the geoid (Volgyesi, 2001, 2005). The horizontal gradients W., and ., and the
curvature gradients W, and W,, measured by torsion balance can be used for the
determination of the vertical gradients. The first method was developed by Haalck
(1950), but his method seemed to be too sensitive to the not linear changing of the
horizontal and curvature gradients between the neighbouring torsion balance points
(Ultmann, 2012). A new possibility for the determination of the vertical gradients is the
application of the inversion reconstruction of the gravity potential based on torsion
balance measurements (Dodroka and Volgyesi, 2008a, 2008b). First the main principle
of the inversion algorithm is discussed here, and than test computation shows the
application of this method.

2. The 3D inversion algorithm

Let us choose the 3D gravity potential W (x,y,z)as an expansion in a series of a
known set of basis function #,....¥p:
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where /=i+(j—-D*N,+(k-1)*N,*N,  and B; are unknown coefficients of the

expansion in a series. In our computations Legendre polinomials are applied as the basis
functions. The constant term is marked by index 1, so the possibility of i=j=k=1 can be
precluded, because the potential is unequivocal apart from an additive constant.

The second derivatives of the potential (1) give the computed values of the
horizontal gradients W, W, and the curvature data W,, W, , as
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where the prime «'» denotes differentiation with respect the variable of the basis
function. These are the gradients, which can be measured by torsion balance. The
vertical gradients can be computed as

CWW_”’ZZZMwwm%@ (©)

i=1 j=lk=1

and the first derivatives:
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where W, = g is the gravity, W, =—gé+U,, W,=-gn+U, can be computed from

the components of the deflection of the vertical £and 7, (U is the normal potential) .
Let’s introduce the notations at the g-s measurement point (x,, y,,z,)
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so the computable torsion balance data, vertical gradients and the computable first
derivative data at the same point:
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where M =N,N,N_-1 is the number of coefficients of the series expansion, and
Agts Cq1s Dyrs Fyis By Ogr> Ryp» Sy are computable and known matrix elements at the

g™ measurement point. All the values of (10) - (17) can be written to a single coefficient
matrix (so called Jacobi matrix)
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Let us introduce the vector notations for the measured quantities:
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and for the computed data:
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using eqs. (18) - (25). The vector of computed data takes the form
comp-d =GB . (29)

The ¢™ element of the discrepancy vector of the measured and the computed data:
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Let our inverse problem be overdetermined and let the function have to be
minimized the norm L, of the discrepancy vector:
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The discrepancy vector of the measured and the computed data:
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and substituting this into (38):
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for the vectorial discussion, where N = Z N, , the total number of the measured data.
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It is well-known, that the potential field should fulfill the Laplace equation
AW =W, +W,,, + W_. =0 at the (free air) measurement points. The computed value of

AW can be written as
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or introducing the notation at the g™ measurement pont (g = 1,2,...,Ng, here Ny is the
number of the points, where AW =0 is required)
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In order to take into account these restrictions, we extend the data structures in eqs.
(27) and (28) so, that
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the extended discrepancy vector of the measured and the computed data:
ext.€= miftsd -GB, 47)

and the new functional to be minimized is
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The solution of this inverse problem is based on the condition system
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resulting in the set of normal equations
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So this inverse problem is linear, vector B of expansion in a series’ coefficients can

be determined by solving the above set of equations
1
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So the potential function — apart from an additive constant — can be determined at
any points of the region covered by torsion balance measurements using the coefficients
of expansion in a series of a known set of basis function.

3. Test computations

For checking of the 3D inversion algorithm test computations were performed at the
region of the south part of the Csepel-island where torsion balance and vertical gradient
measurements are available. This test area is a characteristic region of a Hungarian plate
area. Both topographic conditions and the density of the torsion balance points are
similar to the average conditions in Hungary. Earlier torsion balance measurements
were made here in 1950 for geophysical prospecting, the average distance between the
points was about 1-1.5 km. Since the original point density was not enough for our
investigations, new torsion balance measurements were made, completed by vertical
gradient measurements. The new measurements were made by the support of the OTKA
project K60657 managed by G. Csapd between 2006 and 2010 (Csapd et al, 2009a,
2009b). Location of the 4 earlier torsion balance measurement points are marked by
squares, the new 30 torsion balance points marked by circles, and the 21 gravity
measurements are marked by crosses on Fig. 1. Torsion balance points marked by light
and dark circles were measured in 2007 and in 2008 respectively. The 27 vertical
gradient measurement points can be seen on Fig. 2, the structure and the spatial
distribution of the values of vertical gradients is illustrated by isolines. The values of the
isolines on the Fig. 2 is in [mGal/m] (1 [mGal/m] = 10” [1/s*] = 10000 [E] =10000
E6tvos Unit), coordinates are in meters in the Hungarian Unified National Projections
(EOV) system.
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Fig. 1. Torsion balance stations (marked by squares and circles) and gravity measurements
(marked by crosses) on the test area.
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Fig. 2. Vertical gradient measurements on the test area. The }¥.. values are in mGal/m,
coordinates are in meters in the Hungarian EOV system
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Fig. 3. Isoline map of the horizontal gradients measured by torsion balance.
Isoline values are in [E] (1 E = 1Eétvés Unit=10"s?)

7.2

54
641400 641800 642200 642600 641400 641800 : 642600

193600
i
i

Fig. 4. Isoline map of the curvature gradients measured by torsion balance.
Isoline values are in [E] (1 E = 1E&tvés Unit=10"s?)

On the solution of the inversion problem all the coefficients were determined which
are necessary for the computation, and all the second derivatives of the potential
function were computed by joint inversion for the whole test area. On Figs. 3 and 4
isoline map of horizontal gradients W., and W.,, and curvature gradients W,, and W,
can be seen respectively (isoline values are in [E] (1 E = 1E6tvos Unit = 107 s 7).
Comparing the torsion balance measurements to the computed horizontal and curvature



gradient data very good agreement can be found. All these gradients from the joint
inversion computation are equal within 0.1E accuracy to the measured data and we get
the same isoline pictures for the computed gradients as can be seen on Figs. 3 and 4.

In the knowledge of the expansion coefficients, it is also possible to compute the
potential field and further first and second derivatives of the potential function by using
the expansion formula. So, there is a possibility to determine the vertical gradients W,
from joint inversion in spite of the fact that vertical gradient can not be measured
directly by the torsion balance.

For the vertical gradient computation only a part of the measured 27 vertical
gradient values was used as initial data for the joint inversion and the remaining part of
the points were used for controlling the computation. As it can be seen on Fig. 5
altogether 21 from the whole 27 points marked by dots was chosen as initial data for the
inversion computation and the remaining 6 points marked by crosses were used for
controlling the results.
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Fig. 5. Computed vertical gradients J¥,, from the joint inversion, values are in mGal/m

Comparing the measured vertical gradient data to the computed value at the 6
controlling point differences are summarize in Table 1. The root mean square of the
differences is £11.6 uGal/m, which is the order of magnitude of the measurements of the
vertical gradient. So this is a strong demostration of the applicability of the inversion
reconstruction of the gravity potential for the determination of the vertical gradients
based on torsion balance data.



Table 1. Measured and computed data at the controlling points.

Point measured W, computed W, difference
[mGal/m] [mGal/m] [uGal/m]

1.1 -0.3078 -0.2967 11.2
1.4 -0.3001 -0.3036 -15.6
2.3 -0.3049 -0.2943 16.7
234 -0.3042 -0.3062 -0.1
3.35 -0.3164 -0.3097 1.5
3.45 -0.3172 -0.3063 12.3

RMS =11.6

4. Conclusion

The presented 3D inversion reconstruction method gives possibility for the
determination of the gravity potential function by joint inversion using a large number of
torsion balance and gravity data completed a few astronomical (deflection of the
vertical) and digital terrain model data.

Different important data fields, all the first and the second derivatives of the
potential (the full E6vos-tensor, deflections of the vertical, vertical gradients) can be
originated from this reconstructed potential function, not only in the torsion balance
points but in their surroundings too (at any points of the investigated area).

This method gives a new possibility to transform the torsion balance measurements
to different heights and the analytical determination of the geoid surface.

Our investigations haven’t yet finished, several questions of detail need to be
solved, but the 3D inversion method is working demonstrably well and can be used for
the determination of the vertical gradients based on torsion balance measurements
completed by different gravity data.
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