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DETERMINATION OF GRAVITY FIELD FROM
HORIZONTAL GRADIENTS OF GRAVITY

L VOLGYESI'?, G TOTH'?, G CSAPO’

A method was developed, based on integration of horizontal gradients of gravity W, and

Wy to predict gravity at all points of a torsion balance network. Test computations were per-
formed in a typically flat area where both torsion balance and gravimetric measurements are
available. There were 248 torsion balance stations and 1197 gravity measurements on this area.
18 points from these 248 torsion balance stations were chosen as fixed points where gravity are
known from measurements and the unknown gravity values were interpolated on the remaining
230 points.

Comparison of the measured and the interpolated gravity values indicates that horizontal
gradients of gravity give a possibility to determine gravity values from torsion balance meas-

urements by mGal accuracy on flat areas.

Keywords: Determination of gravity field, horizontal gradients of gravity, torsion balance
measurements.

1 The proposed method

Let’s start from the relationship between gravity and gravity potential:

g=—gradW, M

where W is the gravity potential. Changing of gravity g between two arbitrary points P and P, is:

-o-{(2) ()]

In a special coordinate system (x points to North, y to East and z to Down) the changing of gravity:

w-o| () %))

Applying the notation W, =0W /0z for the partial derivatives, the changing of gravity between
the two points P, and P, is:
(g —&:)=07.) =02,

So in the case of displacement vector dr the infinitesimal change of gravity g will be:

dg=V(g)-dr= a—gabc+a—gafy +a—gdz =W dx+ W, dy+W_dz.
ox oy oz

Integrating this equation between points P. and P, we get the changing of gravity:
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k k k k
(¢ &)= [dg = [ W+ [Wydy+ [W.dz, @

where W, and W,, are horizontal gradients of gravity measured by torsion balance, W is the

measured vertical gradient.

Let’s compute the first integral on the right side of equation (2) between the points P, and P, .

Before the integration a transformation to a new coordinate system is necessary; the connection
between the coordinate systems (x, y) and the new one (, v) can be seen on Fig. 1. Denote the di-
rection between the points P and P, with u and be the coordinate axis v perpendicular to u. Denote

the azimuth of u with «¢;; and point the z axis to down, perpendicularly to the plane of (xy) and

(uv)!

Au
//’ P

Fig. 1 Coordinate transformation (x,y)—(u,v)

The transformation between the two systems is:

X=ucosay, —vsinay }

y=usinay +vcosay

Using these equations, the first derivatives of any function W are:
oW _owax oWy _ow
Oou Ox Ou Oy ou Ox
8W_6W@+8_W6_y_ ow .

—_— = =———sinq +a—Wcosozl-,C
ov  0Ox Ov Oy Ov Ox oy

ow .
cosay, + a—SlIl A

From this first equation

W, du= (sz cosay + W, sinay )du = W_dx+W_dy,

(dx] (cos aikJ
=| . du
dy sina,

If points P, and P, are close to each other as required, integrals on the right side of equation (2)

because

can be approximated by using the trapezoidal rule:
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k k

J'(szdx + Wzydy) = Iqu du =~ %[(qu )i + (qu )k ] 3)
f Ah

.[sz dz ~ Ttk [(sz )i + (sz )k ] ~ Ahik sz ~ Ahik Uzz (4)
i

where s is the horizontal distance between points P, and P, , 4h; is the height difference be-

tween these two points and U, is the normal value of the vertical gradient.

U_. =y LI
M N

where y =y,(1+ Bsin’ @) is the normal gravity on the ellipsoid; M and N is the curvature radius of

U in the meridian and in the prime vertical. With the values of the Geodetic Reference System 1980,
the following holds at the surface of the ellipsoid:

U, =3086ns>.

The value of integral (4) depends on the vertical gradient #_, and the height difference between

the points.
So, neglecting the effect of (4) the differences of gravity values between two points can be com-
puted by the approximate equation:

(gk _gi) ~ %{[(sz)l + (sz)k] COS & +[(Wzy)i + (Wzy)k] sin iy }+ AhikUzz . (5)

If the normal value of vertical gradient U, differs significantly from the local value, then its ef-
fect must be taken into account.

2 Practical solutions

If a large number of torsion balance measurements are available, it is possible to form an interpola-
tion net (a simple example can be seen in Fig. 2) for determining gravity at each torsion balance
points (Volgyesi, 1993, 1995, 2001). On the basis of Eq. (5)

(g —8:)=Cy (6)

can be written between any adjacent points, where

. w.),+W.
Ci :Sik{—(sz)l U I +—( 2)i 2( 2 )i sinaik} @)

5 S

For unique interpolation it is necessary to know the real gravity value at a few points of the net-
work (triangles in Fig. 2). Let us see now, how to solve interpolation for an arbitrary network with
more points than needed for a unique solution, where gravity values are known. In this case the g
values can be determined by adjustment.
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n-1

Pn—z
P

Fig. 2 Interpolation net connecting torsion balance points

The question arises what data are to be considered as measurement results for adjustment: the
real torsion balance measurements W_ and W_ , or C, values from Eq. (7). Since no simple func-

zy
tional relationship (observation equation) with a measurement result on one side and unknowns on
the other side of an equation can be written, computation ought to be made under conditions of
adjustment of direct measurements, rather than with measured unknowns — this is, however, exces-
sively demanding in terms of storage capacity. Hence concerning measurements, two approxima-
tions will be applied: on the one hand, gravity values from measurements at the fixed points are left
uncorrected — thus, they are input to adjustment as constraints — on the other hand, C;; on the left

hand side of fundamental equation (6) are considered as fictitious measurements and corrected.
Thereby observation equation (6) becomes:

Cik +vik =&k — &i (®)
permitting computation under conditions given by adjusting indirect measurements between un-
knowns (Detrekéi, 1991).

The first approximation is possible since reliability of the gravity values determined from meas-
urements exceeds that of the interpolated values considerably. Validity of the second approximation
will be reconsidered in connection with the problem of weighting.

For every triangle side of the interpolation net, observation equation (8):

Vie =&k — & — Cy )

may be written. In matrix form:

v=A x+1
(m,1) (m,2n)(2n,1)  (m,1)

where A is the coefficient matrix of observation equations, x is the vector containing unknowns g,

1 is the vector of constant terms, m is the number of triangle sides in the interpolation net and 7 is
the number of points. The non-zero terms in an arbitrary row i of matrix A are:

[. 0 +1 -1 0 .]

while vector elements of constant term 1 are the C,, values.

Gravity values fixed at given points modify the structure of observation equations. If, for in-
stance, g, = g, 18 given in (8), then the corresponding row of matrix A is:

[. 00 -10 .]

the changed constant term being: C;; — g, , that is g, , and of coefficients of g, are missing from

vector X, and matrix A, respectively, while corresponding terms of constant term vector 1 are
changed by a value g, .
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The adjustment brings up the problem of weighting. Fictitious measurements may only be ap-
plied, however, if certain conditions are met. The most important condition is the deducibility of
covariance matrix of fictitious measurements from the law of error propagation, requiring, however,
a relation yielding fictitious measurement results, — in the actual case, Eq. (7). Among quantities on
the right-hand side of (7), torsion balance measurements W, and W, may have errors. They are

z z

about equally reliable +1E (1E = 1E6tvés Unit =107 57 ), furthermore, they may be considered as
mutually independent quantities, thus, their weighting coefficient matrix Q,,;,, will be a unit matrix.

With the knowledge of Q,,,, , the weighting coefficient matrix Q.. of fictitious measurements C,
after Detrek6i (1991) is:

Q. =FQ,,F=FF

Q,,, =E being a unit matrix. Elements of an arbitrary row i of matrix F~ are:

(ac,.kj (ac,.kj (ac,.kj [ac,.kJ [ac,.kj [aCikJ
ow., ). \ow., ), ., ) ow, ) aw, ), o, |

For the following considerations let us produce rows f, and f, of matrix F~ (referring to sides

between points A, — P, and P, — P, respectively):

* S1, Sina S1, SIN QX S1, COS S1, COS
f, :[ 12 : 12 512 : 2 0.0,..,0°0 5 12 S 3 12 ,0,0,...,O]
and
. S12 Sina S12 Sina S12 COSQX S12 COSQX
f1:[ 13 13’0’ 13 13’0’0’“.’0’ 13 13’0’ 13 13’0’0’.“’0].
2 2 2 2

Using f,", variance of C,, value referring to side P, — P, is:

2 2

m =i(2s1n a,, +2cos a12)=i
4 2

while f," and f, yield covariance of C, values for sides B~ P, and B - P,:

815813 (. .
cov = T(sm ay, sina,, +cosa,, cosa; ).

Thus, fictitious measurements may be stated to be correlated, and the weighting coefficient matrix
contains covariance elements at the junction point of the two sides. If needed, the weighting matrix
may be produced by inverting this weighting coefficient matrix. Practically, however, two approxi-
mations are possible: either fictitious measurements C; are considered to be mutually independent,

so weighting matrix is a diagonal matrix; or fictitious measurements are weighted in inverted quad-
ratic relation to the distance.

By assuming independent measurements, the second approximation results also from inversion,
since terms in the main diagonal of the weighting coefficient matrix are proportional to the square
of the side lengths. The neglection is, however, justified, in addition to the simplification of compu-
tation, also by the fact that contradictions are due less to measurement errors than to functional
errors of the computational model (Volgyesi, 1993).
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3 Test computations

Test computations were performed in Hungary an area extending over about 750 km”. In the last
century approximately 60000 torsion balance measurements were made mainly on the flat part of
Hungary, of which at present 26859 torsion balance measurements are available in digital form.
Location of these 26859 torsion balance observational points and the site of the test area can be seen
on Fig. 3.

Test area

[ point / km?]

Fig. 3 Torsion balance measurements being stored in computer database, and the site of the test area

165000
1600001 . . 4
5,10 Guo b opTo e § oladTe &0
. Jof oMdT og ot o T 0 80T 6ot
1ss0001: B 2,00 2o o.."o'.o:z O:.o:'. o .‘..5"0". o o Sy
| gt S n bl olew e 90
o o8 e ey e L .-.',.'0-..:0...._0.:0.:- o 4
1500007' .‘. O.'.(:D:"O' ..o.--'-.__.'o.. O'.. o .:._'.O '-'. o 'C)-. o C.)'-....O ol
. 5 .'O-'-o._ o.o -o'.'é o -...O . "c‘z'.'-'é". o :.‘o -..9.
°. © S o © .‘.o:'o:- q %o 4 _.:o O".."o .o".‘
P A R A L
. . . . .é'. o..D'_ .:-O.-:'CZ o..:-o'.
o ¢ ooF o lo oo S v S atfiio.agt o 9
645000 650000 655000 660000 665000 670000 675000

Fig. 4 Gravity measurements (marked by dots) and torsion balance points (marked by circles) on the test area.

Hungarian EOV coordinates are in [m] on the axis.
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Our test area is nearly in the middle of Hungary (see on Fig. 3). There were 248 torsion balance
stations and 1197 gravity measurements on this area. 18 points from these 248 torsion balance
stations were chosen as fixed points where gravity are known from measurements and the unknown
gravity values were interpolated on the remaining 230 points. Location of torsion balance stations
(marked by circles) and the gravity measurements (marked by dots) can be seen on Fig. 4.

Topography of the test area can be seen on Fig. 5, the height difference between the lowest and
highest points is less than 20 m.
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Fig. 6 Gravity field from g measurements on the test area
The isoline map of gravity constructed from 1197 g measurements can be seen on Fig. 6. Small
dots indicate the locations of measured gravity values. Measurements were made by Worden gra-

vimeters, by accuracy of +20-30 pGal. At the same time the isoline map of gravity values con-
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structed from the interpolated values from 248 torsion balance measurements can be seen on Fig. 7.
Small circles indicate the locations of torsion balance points.
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Fig. 7 Isoline map of interpolated gravity values from horizontal gradients of gravity W, and W,y measured by
torsion balance
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Fig. 8 Isoline map of differences between the measured and the interpolated gravity values
More or less a good agreement can be seen between these two isoline maps. In order to control
the applicability and accuracy of interpolation, we compared the given and the interpolated g values.

Gravity values were determined for each torsion balance points from gravity measurements by lin-
ear interpolation on the one hand and gravity values for the same points from gravity gradients
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measured by torsion balance were computed on the other. Isoline and surface maps of differences

between the two types of g values can be seen on Figures 8 and 9. The differences are about +1-2
mGal the maximum difference is 6 mGal.
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Fig. 9 Surface map of differences between the measured and the interpolated gravity values

Finally the standard error characteristic to interpolation, determined by

1 c me. i
mg =% ;Z(gi -,
i=l

was computed (where g/"* are from gravity measurements, g}m' are the interpolated values from
torsion balance measurements and n =248 is the number of torsion balance stations). Standard
error m, =*1.6 mGal indicates that horizontal gradients of gravity give a possibility to determine

gravity from torsion balance measurements by mGal accuracy on flat areas.

It is interesting that a correlation can be found comparing the surface map of differences be-
tween the measured and the interpolated gravity values (see Fig. 9) by the topography of the test
area (see Fig. 5). The biggest errors can be found at the right side of the test area, where the biggest
height differences are. In case of a hilly area accuracy of interpolation would probably be increased
by taking into consideration the real vertical gradient values instead of the normal one. Unfortu-
nately we haven’t got the real vertical gradient values at torsion balance points on our test area yet.

It would be important to investigate the effect of vertical gradient’s value for the interpolation in
the future. The real value of _, can be computed from torsion balance measurements too, investi-

gations are going on in this respect (T6th-Volgyesi-Csapo, 2004).
Summary

A method was developed, based on integration of horizontal gradients of gravity W_ and W_ , to

predict gravity values at all points of the torsion balance network. Test computations were per-
formed in an area in Hungary where both torsion balance and gravimetric measurements are avail-
able. Comparison of the measured and the interpolated gravity values indicates that horizontal gra-
dients of gravity give a possibility to determine gravity field from torsion balance measurements by

mGal accuracy. Accuracy of interpolation would probably be increased by taking into consideration
the real values of vertical gradient instead of normal one.
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