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Rotation of the Earth is a quite involved process. Deep knowledge of certain areas 
of physics is indispensable for its understanding and researching. It is necessary to 
clarify the physics of rigid bodies’ rotation because the usage of terms precession and 
nutation by experts in geosciences are generally not correct, sometimes confused. In 
physics nutation is the motion of a free gyroscope, and precession is the motion of a 
heavy one. The torque of an external force causes the precession of a heavy gyro-
scope, but nutation is a motion of a free gyroscope, if its rotation has not started 
around its symmetry axis. While the cause of precession of a rotating body always 
arises from the effect of external mass sources, nutation is exclusively a function of 
the intrinsic mass distribution of the rotating body. After discussing some important 
aspects of rotational mechanics (motion of a free and a heavy gyroscope), the Earth’s 
nutation and certain elements of Earth’s precession (normal precession, lunisolar pre-
cession, planetary precession, disturbing precession) are defined and discussed. A new 
terminology is proposed, e.g. disturbing precession instead of the widely spread de-
ceptive expression of astronomical nutation. 

Keywords: Earth’s rotation, normal precession, lunisolar precession, planetary 
precession, disturbing precession, free nutation. 

1 Heavy and free gyroscopes 

Two important types of gyroscopes, the heavy and free ones, can be seen in Fig. 1. 
Under the influence of the torque acting on its center of gravity the heavy gyroscope 
makes precessional motion around its symmetry axis in the case of a suitable rotational 
angular velocity of ω

r
, i.e. the rotation axis together with the body wanders round along 

the surface of a cone with an angular velocity of  precession ωω
rr

<<pr . 
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Fig. 1. Motion of a heavy and a free gyroscope 

 
The free gyroscope differs from this in the fact that the torque of external forces re-

spective to its center of gravity is zero (such is e.g. the gyroscope supported at its center 
of gravity). If the axes of rotation and symmetry of the free gyroscope do not coincide 
then it makes nutational motion. In this case the body’s rotation axis continuously 
changes its position related to the body, the rotation axis wanders round along the sur-
face of a cone around the body’s symmetry axis with an angular velocity of nutation 

ωω
rr

<<nu . 

2 Precession of heavy gyroscopes 

During its motion each rigid body tries to maintain theirs rotation state due to theirs 
rotation inertness, in other words the angular momentum N  of any closed system is 
constant according to the law of conservation of angular momentum, therefore its varia-
tion in time is: 

0
dt
d

=
N . (1) 

If external forces also exert effect on the rotating rigid body, then the change in the an-
gular momentum is equal to the torque Mof the external forces: 

MN
=

dt
d . (2) 

The torque vector is the cross product of the force F  and the lever arm r , ][ rFM ×= , 
and according to the relationship known in mechanics the angular momentum is ω

rIN =  
( I  is the inertia moment tensor of the rigid body, and ω

r
 is the vector of rotational an-

gular velocity). As I = const. for a rigid body, therefore I  can be taken out of the differ-
ential sign, thus (2) can be written in the form of 

[ ]rFI ×=
dt
dω  (3) 

as well. On the other hand, it can already directly be seen from this, that in the gravity 
field, under the influence of the external torque the spatial direction of the angular ve-
locity vector ω

r
of rigid, sufficiently rapidly rotating bodies (the so-called heavy gyro-
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scopes) continuously changes; the vector ω
r

 always moves perpendicularly to the direc-
tions of F  and r . In compliance with this the quickly rotating gyroscope of tilt axis that 
can be seen in the left side of Fig. 1 (e.g. the toy gyroscope, the humming top) does not 
fall down, but its rotation axis slowly wanders round along the surface of a circular cone 
of vertical axis, with a constant angular speed of precession ωω

rr
<<pr . This motion of 

the gyroscope’s rotation axis is the precession. 

3 Motion of symmetric gyroscopes 

Let us study the motion of the symmetric gyroscope in that case when both the fixed 
point O  and the center of gravity S  are on the symmetry axis, and let denote s  the in-
terval OS . Be the z  axis of the ),,( zyxK  inertial system fixed in space directed verti-
cally upwards as it can be seen in Fig. 2, on the other hand, directions of the axes of the 

),,( zyxK ′′′′  system fixed to the body and rotating together with it should one after an-
other coincide with the directions of the major moments of inertia CAA ,, . 

Be the components of the rotational angular velocity vector ω
r

 in the system 
),,( zyxK ′′′′ : ''' ,, zyx ωωω  (the body rotates not round its symmetry axis C!) and let 

us characterize the position of system K ′  in K  with the ϕψϑ ,,  Euler-type angles, as it 
can be seen in Fig. 2. Our task is to describe the motion of the symmetric gyroscope in 
the system K . 

To solve the task, let us start from the energy conservation’s principle. According to 
this for the heavy gyroscope the sum of the rotational and the potential energies 

ϑcosmgs  as shown in Fig. 2 is constant: 

( ) .cos
2
1 2

'
2
'

2
' constmgsCAA zyx =+++ ϑωωω  (4) 

 

Fig. 2. Coordinates used to describe the motion of the heavy gyroscope 
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In addition, as it also can be seen in Fig. 2, the torque vector M  of the force of gravity is 
perpendicular to both of axes z  and 'z , therefore the components of M  respective to 
these two axes are zero: 

0=zM  (5) 
and 

0' =zM . (6) 

From this a further important relationship arises using 
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 (7) 

the third member of Euler’s gyroscopic equations. Taking into account (6), and due to 
the symmetry equivalence of the moments of inertia, BA =  in the plane perpendicular 
to the rotation axis: 

0' =
dt

d
C zω

 

from this, because 0C ≠ : 
.'' áll0zz == ωω  (8) 

At the same time, from equation (5), based on the relationship (2) concerning the con-
servation of the angular momentum: 

.constNz =  

from this further important conclusions can be done, if this is rewritten, resolving it into 
components according to the coordinate directions of 'K  based on Fig. 2: 

.),'cos(),'cos(),'cos( ''' constzzNzyNzxNN zyxz =++=  

From this taking into account that '' xx AN ω= , '' yy AN ω=  and '' zz CN ω= : 

.),'cos(),'cos(),'cos( ''' constzzCzyAzxAN zyxz =++= ωωω  (9) 

Let us express the direction cosines in (9) with the Euler-type angles. Using the 
relevant relationships of spherical trigonometry, after (BUDÓ, 1964) the individual di-
rection cosines can be expressed with the Euler-type angles as shown summarized in 
Table 1. (According to the table e.g. ϑϕ sinsin),'cos( =zx .) 

Writing the appropriate direction cosines in equation (9) from Table 1: 

.cos)sincossinsin( ''' constCAN zyxz =++= ϑωϑϕωϑϕω  (10) 
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Table 1. Direction cosines expressed with the Euler-type angles 

 x’ y’ z’ 
x cos ϕ cos ψ -sin ϕ 

sin ψ cos ϑ 
- sin ϕ cos ψ -cos 
ϕ sin ψ cos ϑ 

sin 
ψ 
sin 
ϑ 

y cos ϕ sin ψ +sin ϕ 
cos ψ cos ϑ 

- sin ϕ sin ψ +cos 
ϕ cos ψ cos ϑ 

-
cos 
ψ 
sin 
ϑ 

z sin ϕ sin ϑ cos ϕ sin ϑ cos 
ϑ 

 
Because the components of the angular velocity vector ω

r
 in the coordinate system 'K  

rotating together with the body can be expressed with the Euler-type angles 
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 (11) 

using these equations (LANDAU-LIFSIC, 1974), therefore we have the possibility to re-
write the ''' ,, zyx ωωω  angular velocity components in equations (4), (8) and (10) using 
the Euler-angles. Thus equations (4), (8) and (10) are: 
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 (12) 

where the const. value in the first equation already includes 2
0zC 'ω   as well. This is a set 

of three differential equations of first order, independent of each other, from these the 
three unknowns, )(tϑ , )(tψ  and )(tϕ  can be determined by numerical integration, i.e. 
the motion of the heavy symmetrical gyroscope can be given on the system K  fixed in 
space. 

To solve the differential equation system (12) adequate initial conditions should be 
chosen at first. Let us chose as initial condition the case, when the heavy gyroscope’s 
symmetry axis includes an angle of 0ϑ  with the z  axis of vertical direction, and then 
let the gyroscope have a rotational angular velocity 0z 'ω  exclusively around its symme-
try axis. I.e. at the moment  0=t : 
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0'0 ,0,0, zdt
d

dt
d

dt
d ωϕψϑϑϑ ====  . 

Writing in (12) the values of constants corresponding to the initial conditions (in order: 
0mgs2 ϑcos , 0z 'ω  and 00zC ϑω cos' ), after transposition: 
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Expressing dtd /ψ from the third equation of (13) and writing it in the first equation of 
(13), after a minor transposition: 
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A well approximating solution of this for the case of sufficiently quickly rotating gyro-
scopes (BUDÓ, 1964): 







 −+= t
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C
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0z2
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2
0
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'

cos
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ω
ω

ϑ
ϑϑ . (14) 

Introducing the following notations 

)
sin

(
' ϑω

ω
z0z

pr N
M

C
mgs

==  (15) 

(average precessional angular velocity) and 

0znu A
C

'ωω =  (16) 

(nutational angular velocity): 

( )t1 nu0
nu

pr
0 ωϑ

ω
ω

ϑϑ cossin −+= . (17) 

Using this: 

( )t1
dt

d
nupr ωωψ cos−= , (18) 

then integrating it for 0t =  with the  0ψψ =  initial condition: 



REVISION OF THE PHYSICAL BACKGROUNDS OF EARTH’S ROTATION 

Acta Geod. Geoph. Hung. 41, 2006 

37
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Finally, from the second equation of (13) by substituting (18): 
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
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
−−=

nu

nu
0pr0z

t
tt

ω
ω

ϑωωϕ
sin

cos' . (20) 

Summarizing the results obtained up to now, equations (17), (19) and (20) describe the 
motion of the heavy symmetric gyroscope in the  inertial system K  fixed to the space 
that was given a spin at the moment 0t =  with an angular velocity of ω

r
 and whose ini-

tial position corresponds to the Euler-angles of 0ϑϑ = , 0=ϕ , 0=ψ , 0zdtd '/ ωψ = . 
Equation (19) shows that the horizontal projection of the symmetry axis moves con-

tinuously around the z  axis with an average angular velocity of precession prω  deter-
mined by (18). According to (17) another motion also contributes to this, because the 
tilt angle ϑ  included between the symmetry axis and the vertical direction fluctuates 
periodically between the initial 0ϑ  and a slightly different value. The amplitude of this 
fluctuation (nutation) is  0nupr ϑωω sin)/(  , and its angular velocity is nuω . It can 
clearly be seen from the solution, that the precession is slower, on the other hand, the 
nutation is faster and its amplitude is lower, as the initial rotational angular velocity 

0z 'ω  is higher. As according to (15) the angular velocity of precession is inversely pro-
portional with the value of 0z 'ω , on the other hand, the amplitude of nutation according 
to (14) with the square of the value 0z 'ω  , therefore in the case of sufficiently high rota-
tional angular velocity, nutation can hardly be observed, precession is apparently regu-
lar (pseudo-regular precession). With suitable initial conditions rigorously regular pre-
cession is also possible. If the body rotates exactly round the symmetry axis, in the sys-
tem K ′  two components of the angular velocity vector are zero: 0yx == '' ωω , thus (4) 

can be written in a simpler form and the solution (17) simplifies to the form of 0ϑϑ = . 
In this case nutation does not accompany the precessional motion, this is the regular 
precession. 

In the case of the free gyroscope no external torque exerts any effect, then in (15) 
because of 0M =  0pr =ω , i.e. there is no precessional motion. In this case purely nu-
tational motion can be experienced, when the body does not rotate round its symmetry 
axis. 

4 Nutation of free gyroscopes 

The main point of nutational motion can most simply be understood from the solu-
tion of Euler equations (7). In the case of a symmetrical free gyroscope, after substitut-
ing BA =  and 0=== ′′′ zyx MMM  in the ),,( zyxK ′′′′  system rotating together 
with the body: 
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where 

t
A

AC
0z′

−
= ωα  (22) 

is a linear function of time t , i.e. the vector ω
r

 moves round the 'z  axis of the coordi-
nate system fixed to the mass of body (to the symmetry axis) with a constant angular 
velocity. Based on (22) the time of period belonging to a complete rotation of πα 2=  
depends exclusively on the rigid body’s mass distribution, on the (C-A)/A dynamic ob-
lateness. 

During the nutational motion, as it can be seen in Fig. 3, the endpoint of the vector 
ω
r

 describes a circle around the axis 'z  with a constant angular velocity; its radius is 
2
y

2
xm ′′ += ωω , thus the vector of rotational angular velocity itself moves along the 

surface of a circular cone whose vertex angle is )/(22 0zmarctg ′= ωβ  round the 'z co-
ordinate axis that is identical with the major inertia axis C. Supposing the Earth to be a 
symmetrical rigid body, this is the free nutation referring to the Earth-fixed system K ′ . 

 
Fig. 3. Nutational motion viewed from the coordinate system fixed to the rotating body 

5 The lunisolar precession 

Let us apply our foregoing theoretical considerations to the case of Earth! At first, 
for the sake of simplicity, let us study only the impact of the torque arising from the 
gravitational attraction of Sun. 
The Earth is in a dynamic equilibrium during its orbiting around the Sun; i.e. the KF−  
centrifugal force of orbiting arising from Earth’s orbiting around their common center 
of mass is in equilibrium with the 0F  gravitational attraction of Sun acting on the mass 
center of Earth. 

The Earth’s shape is a rotational ellipsoid with good approximation; length of its 
equatorial half major axis is about 21 km longer than the length of half minor axis. Due 
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to the deviation from the spherical symmetrical mass distribution let us divide the Earth 
into an internal spherical symmetric mass domain and an Equatorial bulge as it can be 
seen in Fig. 4, then cut this bulge into two parts perpendicularly to the figure’s plane. Be 
the center of mass of the bulge part closer to the Sun 1P , while that of the part being 
further 2P . In accordance with Newton’s law of gravitational attraction the attraction 
force acting in 1P  is higher, but in 2P  it is lower than in the center of mass O . Since 
the centrifugal force of orbiting is the same in any point of the Earth due to the eccentric 
motion (VÖLGYESI, 1999), therefore the resultant of the two forces in the point 1P  is: 

KFFF −= 1 , and in point 2P  :  KFFF −=− 2 . These two forces of equal magnitude but 
opposite direction result in the torque vector M  perpendicular to the plane of Fig. 4. 

Similarly to the Sun, the Moon also exerts torque on the Earth; moreover the torque 
generated by the Moon is significantly larger due to the proximity of Moon. 

Result of the common effect of the torques generated this way is the precession mo-
tion of the Earth shown in Fig. 4, the so-called lunisolar precession. 

 

 
Fig. 4. Precesional motion of the Earth’s rotation axis (lunisolar precession) 
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According to the astronomical observations the lunisolar precession manifests itself 
primarily in the fact that the Earth’s rotation axis moves along the surface of a cone with 
a vertex angle of 2 ×23.5 =47o, in accordance with the angle of 23.5  included by the 
planes of ecliptic and the celestial equator; it makes a complete circuity in nearly 25 730 
years. This according to Fig. 4 means, that the northern direction of the Earth’s rotation 
axis pointed at the vicinity of the star α  Draconis about 5000 years ago, at present the 
celestial pole is close to the α  Ursae Minoris (Polaris) and after about 5000 years it 
will be close to the α  Cephei. Thus, for the generations living now it is only a stroke of 
luck from the viewpoint of orientation by night that close to place of the celestial north 
pole a relatively bright star, the North Star can be found. 

6 The planetary precession 

Under the effect of the solar system’s planets the Earth’s orbital plane slowly 
changes relative to the average orbital plane of planets, therefore the tilt angle included 
by the Equator’s and the ecliptic’s plane fluctuates between about 22o and 24.5o with an 
almost 40000 year period. Thus, the normal of ecliptic wanders round along the surface 
of a circular cone whose vertex angle is about 2.5o, with a time of period nearly 40000 
years. Since the ecliptic’s normal is the axis of precession cone, therefore the cone of 
lunisolar precession sometimes slightly opens, sometimes slightly closes due to the os-
cillation of the ecliptic’s plane with a period of 40000 years; i.e. the vertex angle of the 
cone is not steadily 47o, but it varies with a period of approximately 40000 years be-
tween about 44 and 49o. 

 
Fig. 5. The planetary precession 
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As a matter of fact, due to the motion of the ecliptic’s plane the Sun and the Moon 
can be seen from the Earth in continuously other directions, with a period of 40000 
years; and therefore the separation between the part-centers of mass 1P  and 2P , and the 
ecliptic’s plane changes continuously as shown in Fig. 5, i.e. the torque generation the 
precession motion changes (fluctuates) continuously because the lever arm continuously 
changes. 

The resultant of the lunisolar and planetary precession motions is the general preces-
sion, by other name the normal precession. During the normal precessional motion the 
celestial pole moves not exactly along a circular path due to the oscillation of the eclip-
tic’s pole, but it wanders related to the fixed stars along a curve, which closely ap-
proximates the circular path although the curve does not return into itself. Under the ef-
fect of the normal precession the vernal point shifts westward along the ecliptic with a 
value of about 50.26" annually, consequently the time of a complete circuity is about 
25786 years. 

7 Disturbing precession 

As a consequence of the Moon’s, Sun’s and planets’ motion related to the Earth a 
torque changing in time has effect on Earth, therefore different fluctuations of shorter 
period are added to the normal precession motion. These short period changes in the 
precession motion of the rotation axis have been incorrectly called astronomical nuta-
tion up to now; in what follows this phenomenon is called disturbing precession. The 
disturbing precession comprises motions of different period and amplitude and it is su-
perposed on the long period (secular) precession motion. 

It has two rather important periods due to the changes in the relative position of the 
Sun and the Earth. The magnitude of the torque exerted by the Sun on the equatorial 
bulge of Earth depends on the Sun’s angle of declination (on the altitude above the 
Earth’s equatorial plane). Fig. 4 e.g. shows the Earth in the position of winter solstice, 
when o523.−=δ . At that time and on the day of summer solstice (when o523.+=δ ) 
the Sun exerts maximum torque on the Earth. Between the two positions the torque de-
creases and increases, respectively. At the moment of the spring and fall equinox the 
centers of gravity 1P  and 2P  of the Earth’s two equatorial excess masses (equatorial 
bulge) as interpreted in Fig. 4 are at equal distances from the Sun, thus the torque caus-
ing the precession is zero. In accordance with this, the Earth’s precession varies with a 
half year period, due to the changes in the Sun’s declination. A precession variation of 
one-year period is also added to this; this is a consequence of the fact that the Earth or-
bits in an orbit of elliptical shape around the Sun and therefore its distance measured 
from the Sun varies with a one-year period, and in accordance with this the torque as 
well. 

During its orbit around the Earth the Moon causes completely similar changes, but 
its periods are shorter and amplitudes are higher. In addition, motion of the Moon has a 
further effect too, that is even much more important than the previous ones. The Moon 
does not orbit around the Earth in one and the same plane in which the Earth orbits 
around the Sun, the Moon’s orbital plane and the plane of ecliptic include an angle of 
nearly 5o09'. As the intersection line of the Moon’s orbital plane and the ecliptic plane 
(the nodal line of the Moon’s orbit) wanders round in the plane of ecliptic with a period 
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of 18.6 years, therefore the Moon can be seen from the Earth in continuously different 
directions with a period of 18.6 years, and thus according to Fig. 6 continuously 
changes the distance of the part-centers of mass 1P  and 2P  from the Moon’s orbital 
plane. As a consequence, the torque causing the precession motion also changes (fluctu-
ates) continuously, because the lever arm continuously changes. 

 

 
Fig. 6. Impact of the lunar main component of disturbing precession 

The disturbing precession’s component which originates from the motion of the 
Moon orbit’s nodal line is many times larger than together all the other changes com-
prising the precession, therefore it is called the lunar main component of the disturbing 
precession. 

 

 
Fig. 7. The precession ellipse 

Thus the Earth’s rotational angular velocity vector wanders round the normal of the 
ecliptic with an average vertex angle of about 47o at present, along the wavy surface of 
a cone that can be seen in Fig. 6. These waves have amplitudes of about 9" (so much is 
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the fluctuation in the tilt of the rotation axis: the so-called obliquity component), and 
their wavelengths are nearly 15.6'. 

It is a general practice as well to demonstrate the precession motion together with 
the main component of the disturbing precession with the so-called precession ellipse 
that can be seen in Fig. 7. (The term of nutation ellipse widely spread in practice up to 
now is incorrect because this has nothing to do with nutation.) Thus, the center of the 
precession ellipse wanders with constant velocity round the ecliptic’s pole at a polar dis-
tance of 23.5o and makes a complete circle in 26000 years, while the real (the instanta-
neous) celestial pole move along the precession ellipse with a period of 18.6 years. The 
half major axis of the precession ellipse whose distance is 9" is always directed toward 
the ecliptic’s pole, and its half minor axis of a 7" distance is perpendicular to that. 

Summary 

The spatial direction and magnitude of the angular velocity vector always changes 
during the Earth’s rotation. The changes can be seen summarized in Fig. 8. Change in 
the absolute value (length of the day) of the angular velocity vector ω

r
 is primarily the 

consequence of the so-called tidal friction caused by the Moon and the Sun (VÖLGYESI, 
1999). Changes in spatial direction of the angular velocity vector ω

r
 can be divided into 

two groups: changes caused by the precession and nutation motions. The two compo-
nents of the precession motion are the normal precession and the disturbing precession, 
and two further components of the normal precession are the lunisolar and the planetary 
precession. The Earth’s nutational motion, also consists of two components: the polar 
motion and the polar wandering; while the polar motion has two further components, 
the free nutation and the forced nutation. 
 

Length of vector is getting shorter
(angular velocity slow down) Changes in spatial direction

Time variation of Earth rotation vector

Normal precession

Lunisolar
precession

Planetary
precession

Disturbing precession

Precession
Nutation

Polar motion

Free
nutation

Forced
nutation

Polar wander
 

Fig. 8. Variation of the Earth’s rotational angular velocity vector in time and space 

From the above considerations it can clearly be seen that because of the relative 
changes in the positions of the Moon, the Sun and the planets related to the Earth the 
fluctuations of shorter period arising as a result of the time-varying torque cannot be 
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called nutation in physical sense. Due to the complicated movement of the relevant ce-
lestial bodies the torque generating the precession changes, as a consequence the mass 
of the Earth together with the rotation axis of fixed position relative to it makes the 
varying precession motion. Contrary to this, during the nutational motion the rotation 
axis of the Earth does not move together with the Earth’s mass, but independently of the 
impact of any kind of torque the Earth’s mass and its symmetry axis separately from the 
rotation axis make their own complicated motions (this is merely due to the fact that the 
rotation does not take place round the symmetry axis). Wording it in a simpler form ex-
traterrestrial masses are responsible for the precession, on the other hand, exclusively 
the Earth’s own mass (its mass distribution) is responsible for the nutation. 

Consequently, it seems to be reasonable to use the term of disturbing precession in 
the future instead of the misleading astronomical nutation (VÖLGYESI 2003a, 2003b, 
2003c). 
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