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Abstract. Rotation of the Earth is a quite involved 
process. Deep knowledge of certain areas of physics 
is indispensable for its understanding and research-
ing. It is necessary to clarify the physics of rigid 
bodies’ rotation because the usage of terms preces-
sion and nutation by experts in geosciences are gen-
erally not correct, sometimes confused. In physics 
nutation is the motion of a free gyroscope, and pre-
cession is the motion of a heavy one. The torque of 
an external force causes the precession of a heavy 
gyroscope, but nutation is a motion of a free gyro-
scope, if its rotation has not started around its sym-
metry axis.  While the cause of precession of a ro-
tating body always arises from the effect of external 
mass sources, nutation is exclusively a function of 
the intrinsic mass distribution of the rotating body. 
After discussing some important aspects of rota-
tional mechanics (motion of a free and a heavy gy-
roscope), the Earth’s nutation and certain elements 
of Earth’s precession (normal precession, lunisolar 
precession, planetary precession, disturbing preces-
sion) are defined and discussed. A new terminology 
is proposed, e.g. disturbing precession instead of the 
widely spread deceptive expression of astronomical 
nutation. 
Keywords: Earth’s rotation, normal precession, 
lunisolar precession, planetary precession, disturb-
ing precession, free nutation. 

 
 
1 Heavy and free gyroscopes 
 
Two important types of gyroscopes, the heavy and 
free ones, can be seen in Fig. 1. 
Under the influence of the torque acting on its center 
of gravity the heavy gyroscope makes precessional 
motion around its symmetry axis in the case of a 
suitable rotational angular velocity of ω

r
, i.e. the 

rotation axis together with the body wanders round 
along the surface of a cone with an angular velocity 
of  precession ωω

rr
<<pr . 

The free gyroscope differs from this in the fact that 
the torque of external forces respective to its center 
of gravity is zero (such is e.g. the gyroscope sup-
ported at its center of gravity). If the axes of rotation 

and symmetry of the free gyroscope do not coincide 
then it makes nutational motion. In this case the 
body’s rotation axis continuously changes its posi-
tion related to the body, the rotation axis wanders 
round along the surface of a cone around the body’s 
symmetry axis with an angular velocity of nutation  

ωω
rr

<<nu . 
 

 
Fig. 1. Motion of a heavy and a free gyroscope 

 
 
2 Precession of heavy gyroscopes 
 
During its motion each rigid body tries to maintain 
theirs rotation state due to theirs rotation inertness, in 
other words the angular momentum N  of any closed 
system is constant according to the law of conserva-
tion of angular momentum, therefore its variation in 
time is: 

 0
dt
d

=
N . (1) 

If external forces also exert effect on the rotating 
rigid body, then the change in the angular momen-
tum is equal to the torque Mof the external forces: 

 MN
=

dt
d . (2) 

The torque vector is the cross product of the force F  
and the lever arm r , ][ rFM ×= , and according to 
the relationship known in mechanics the angular 
momentum is ω

rIN =  ( I  is the inertia moment ten-
sor of the rigid body, and ω

r
 is the vector of rota-

tional angular velocity). As I = const. for a rigid 



body, therefore I  can be taken out of the differential 
sign, thus (2) can be written in the form of 

 [ ]rFI ×=
dt
dω  (3) 

as well. On the other hand, it can already directly be 
seen from this, that in the gravity field, under the 
influence of the external torque the spatial direction 
of the angular velocity vector ω

r
of rigid, sufficiently 

rapidly rotating bodies (the so-called heavy gyro-
scopes) continuously changes; the vector ω

r
 always 

moves perpendicularly to the directions of F  and r . 
In compliance with this the quickly rotating gyro-
scope of tilt axis that can be seen in the left side of 
Fig. 1 (e.g. the toy gyroscope, the humming top) 
does not fall down, but its rotation axis slowly wan-
ders round along the surface of a circular cone of 
vertical axis, with a constant angular speed of pre-
cession ωω

rr
<<pr . This motion of the gyroscope’s 

rotation axis is the precession. 
 
3 Motion of symmetric gyroscopes 
 
Let us study the motion of the symmetric gyroscope 
in that case when both the fixed point O  and the 
center of gravity S  are on the symmetry axis, and let 
denote s  the interval OS . Be the z  axis of the 

),,( zyxK  inertial system fixed in space directed 
vertically upwards as it can be seen in Fig. 2, on the 
other hand, directions of the axes of the ),,( zyxK ′′′′  
system fixed to the body and rotating together with it 
should one after another coincide with the directions 
of the major moments of inertia CAA ,, . 

 
Fig. 2. Coordinates used to describe the motion of the heavy 

gyroscope 

 Be the components of the rotational angular velocity 
vector ω

r
 in the system ),,( zyxK ′′′′ : 

''' ,, zyx ωωω  (the body rotates not round its symme-
try axis C!) and let us characterize the position of 
system K ′  in K  with the ϕψϑ ,,  Euler-type angles, 
as it can be seen in Fig. 2. Our task is to describe the 
motion of the symmetric gyroscope in the system K . 
To solve the task, let us start from the energy 
conservation’s principle. According to this for the 
heavy gyroscope the sum of the rotational and the 
potential energie ϑcosmgs  as shown in Fig. 2 is 
constant: 
 ( ) .cos

2
1 2

'
2
'

2
' constmgsCAA zyx =+++ ϑωωω  (4) 

In addition, as it also can be seen in Fig. 2, the torque 
vector M  of the force of gravity is perpendicular to 
both of axes z  and 'z , therefore the components of 
M  respective to these two axes are zero: 

 0=zM  (5) 
and 
 0' =zM . (6) 

From this a further important relationship arises us-
ing 
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the third member of Euler’s gyroscopic equations. 
Taking into account (6), and due to the symmetry 
equivalence of the moments of inertia, BA =  in the 
plane perpendicular to the rotation axis: 

0' =
dt

d
C zω

 

from this, because 0C ≠ : 

 .'' áll0zz == ωω  (8) 

At the same time, from equation (5), based on the 
relationship (2) concerning the conservation of the 
angular momentum: 

.constN z =  

from this further important conclusions can be done, 
if this is rewritten, resolving it into components 
according to the coordinate directions of 'K  based 
on Fig. 2: 
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From this taking into account that '' xx AN ω= , 

'' yy AN ω=  and '' zz CN ω= : 
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Let us express the direction cosines in (9) with the 
Euler-type angles. Using the relevant relationships of 
spherical trigonometry, after (BUDÓ, 1964) the indi-
vidual direction cosines can be expressed with the 
Euler-type angles as shown summarized in Table 1. 
(According to the table e.g. ϑϕ sinsin),'cos( =zx .) 
 

Table 1. Direction cosines expressed with the Euler-type angles 

 x’ y’ z’ 
x cos ϕ cos ψ - 

 sin ϕ sin ψ cos ϑ 
- sin ϕ cos ψ - 

 cos ϕ sin ψ cos ϑ 
sin ψ sin ϑ 

y cos ϕ sin ψ + 
 sin ϕ cos ψ cos ϑ 

- sin ϕ sin ψ +  
cos ϕ cos ψ cos ϑ 

-cos ψ sin ϑ 

z sin ϕ sin ϑ cos ϕ sin ϑ cos ϑ 
 
Writing the appropriate direction cosines in equation 
(9) from Table 1: 
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Because the components of the angular velocity vec-
tor ω

r
 in the coordinate system 'K  rotating together 

with the body can be expressed with the Euler-type 
angles 
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using these equations (LANDAU-LIFSIC, 1974), there-
fore we have the possibility to rewrite the 

''' ,, zyx ωωω  angular velocity components in equa-
tions (4), (8) and (10) using the Euler-angles. Thus 
equations (4), (8) and (10) are: 
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where the const. value in the first equation already 
includes 2

0zC 'ω   as well. This is a set of three differ-
ential equations of first order, independent of each 
other, from these the three unknowns, )(tϑ , )(tψ  
and )(tϕ  can be determined by numerical integra-
tion, i.e. the motion of the heavy symmetrical gyro-
scope can be given on the system K  fixed in space. 
To solve the differential equation system (12) ade-
quate initial conditions should be chosen at first. Let 
us chose as initial condition the case, when the heavy 
gyroscope’s symmetry axis includes an angle of 0ϑ  
with the z  axis of vertical direction, and then let the 
gyroscope have a rotational angular velocity 0z 'ω  
exclusively around its symmetry axis. I.e. at the mo-
ment  0=t : 

0'0 ,0,0, zdt
d

dt
d

dt
d ωϕψϑϑϑ ====  . 

Writing in (12) the values of constants corresponding 
to the initial conditions (in order: 0mgs2 ϑcos , 0z 'ω  
and 00zC ϑω cos' ), after transposition: 
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Expressing dtd /ψ from the third equation of (13) 
and writing it in the first equation of (13), after a 
minor transposition: 
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A well approximating solution of this for the case of 
sufficiently quickly rotating gyroscopes (BUDÓ, 
1964): 
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Introducing the following notations 

 )
sin

(
' ϑω

ω
z0z

pr N
M

C
mgs

==  (15) 

(average precessional angular velocity) and 

 0znu A
C

'ωω =  (16) 

(nutational angular velocity): 
 

 ( )t1 nu0
nu

pr
0 ωϑ

ω
ω

ϑϑ cossin −+= . (17) 

Using this: 

 ( )t1
dt

d
nupr ωωψ cos−= , (18) 

then integrating it for 0t =  with the  0ψψ =  initial 
condition: 
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Finally, from the second equation of (13) by substi-
tuting (18): 
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Summarizing the results obtained up to now, equa-
tions (17), (19) and (20) describe the motion of the 
heavy symmetric gyroscope in the  inertial system K  
fixed to the space that was given a spin at the mo-
ment 0t =  with an angular velocity of ω

r
 and whose 

initial position corresponds to the Euler-angles of 
0ϑϑ = , 0=ϕ , 0=ψ , 0zdtd '/ ωψ = . 

Equation (19) shows that the horizontal projection of 
the symmetry axis moves continuously around the z  
axis with an average angular velocity of precession 

prω  determined by (18). According to (17) another 
motion also contributes to this, because the tilt angle 
ϑ  included between the symmetry axis and the ver-
tical direction fluctuates periodically between the 
initial 0ϑ  and a slightly different value. The ampli-
tude of this fluctuation (nutation) is  

0nupr ϑωω sin)/(  , and its angular velocity is nuω . It 

can clearly be seen from the solution, that the preces-
sion is slower, on the other hand, the nutation is 
faster and its amplitude is lower, as the initial rota-
tional angular velocity 0z 'ω  is higher. As according 
to (15) the angular velocity of precession is inversely 
proportional with the value of 0z 'ω , on the other 
hand, the amplitude of nutation according to (14) 
with the square of the value 0z 'ω  , therefore in the 
case of sufficiently high rotational angular velocity, 
nutation can hardly be observed, precession is appar-
ently regular (pseudo-regular precession). 
With suitable initial conditions rigorously regular 
precession is also possible.. If the body rotates ex-
actly round the symmetry axis, in the system K ′  two 
components of the angular velocity vector are zero: 

0yx == '' ωω , thus (4) can be written in a simpler 
form and the solution (17) simplifies to the form of 

0ϑϑ = . In this case nutation does not accompany the 
precessional motion, this is the regular precession. 
In the case of the free gyroscope no external torque 
exerts any effect, then in (15) because of 0M =  

0pr =ω , i.e. there is no precessional motion. In this 
case purely nutational motion can be experienced, 
when the body does not rotate round its symmetry 
axis. 
 
4 Nutation of free gyroscopes 
 
The main point of nutational motion can most simply 
be understood from the solution of Euler equations 
(7). In the case of a symmetrical free gyroscope, after 
substituting BA =  and 0=== ′′′ zyx MMM  in the 

),,( zyxK ′′′′  system rotating together with the body: 
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where 

 t
A

AC
0z′

−
= ωα  (22) 

is a linear function of time t , i.e. the vector 
ω
r

moves round the 'z  axis of the coordinate system 
fixed to the mass of body (to the symmetry axis) 
with a constant angular velocity. Based on (22) the 
time of period belonging to a complete rotation of 

πα 2=  depends exclusively on the rigid body’s 
mass distribution, on the (C-A)/A dynamic oblate-
ness. 



 
Fig. 3. Nutational motion viewed from the coordinate system 

fixed to the rotating body 
 

During the nutational motion, as it can be seen in 
Fig. 3, the endpoint of the vector ω

r
 describes a cir-

cle around the axis 'z  with a constant angular veloc-

ity; its radius is 2
y

2
xm ′′ += ωω , thus the vector of 

rotational angular velocity itself moves along the 
surface of a circular cone whose vertex angle is 

0
22

z
marctg

′
= ωβ  round the 'z coordinate axis that 

is identical with the major inertia axis C.   Supposing 
the Earth to be a symmetrical rigid body, this is the 
free nutation referring to the Earth-fixed system K ′ . 
 
5 The lunisolar precession 
 
Let us apply our foregoing theoretical considerations 
to the case of Earth! At first, for the sake of simplic-
ity, let us study only the impact of the torque arising 
from the gravitational attraction of Sun. 
The Earth is in a dynamic equilibrium during its or-
biting around the Sun; i.e. the KF−  centrifugal force 
of orbiting arising from Earth’s orbiting around their 
common center of mass is in equilibrium with the 

0F  gravitational attraction of Sun acting on the mass 
center of Earth. 
The Earth’s shape is a rotational ellipsoid with good 
approximation; length of its equatorial half major 
axis is about 21 km longer than the length of half 
minor axis. Due to the deviation from the spherical 
symmetrical mass distribution let us divide the Earth 
into an internal spherical symmetric mass domain 
and an Equatorial bulge as it can be seen in Fig. 4, 
then cut this bulge into two parts perpendicularly to 
the figure’s plane. Be the center of mass of the bulge 
part closer to the Sun 1P , while that of the part being 
further 2P . In accordance with Newton’s law of 

gravitational attraction the attraction force acting in 
1P  is higher, but in 2P  it is lower than in the center 

of mass O . Since the centrifugal force of orbiting is 
the same in any point of the Earth due to the eccen-
tric motion (VÖLGYESI, 1999), therefore the resultant 
of the two forces in the point 1P  is: KFFF −= 1 , and 
in point 2P  :  KFFF −=− 2 . These two forces of 
equal magnitude but opposite direction result in the 
torque vector M  perpendicular to the plane of Fig. 4. 

 

 
Fig. 4. Precesional motion of the Earth’s rotation axis 

(lunisolar precession) 
 

Similarly to the Sun, the Moon also exerts torque on 
the Earth; moreover the torque generated by the 
Moon is significantly larger due to the proximity of 
Moon. 
Result of the common effect of the torques generated 
this way is the precession motion of the Earth shown 
in Fig. 4, the so-called lunisolar precession. 
According to the astronomical observations the 
lunisolar precession manifests itself primarily in the 
fact that the Earth’s rotation axis moves along the 
surface of a cone with a vertex angle of 
2 ×23.5 =47o, in accordance with the angle of 23.5  
included by the planes of ecliptic and the celestial 
equator; it makes a complete circuity in nearly 
25 730 years. This according to Fig. 4 means, that 



cording to Fig. 4 means, that the northern direction 
of the Earth’s rotation axis pointed at the vicinity of 
the star α  Draconis about 5000 years ago, at present 
the celestial pole is close to the α  Ursae Minoris 
(Polaris) and after about 5000 years it will be close 
to the α  Cephei. Thus, for the generations living 
now it is only a stroke of luck from the viewpoint of 
orientation by night that close to place of the celestial 
north pole a relatively bright star, the North Star can 
be found. 
 
6 The planetary precession 
 
Under the effect of the solar system’s planets the 
Earth’s orbital plane slowly changes relative to the 

average orbital plane of planets, therefore the tilt 
angle included by the Equator’s and the ecliptic’s 
plane fluctuates between about 22o and 24.5o with an 
almost 40000 year period. Thus, the normal of eclip-
tic wanders round along the surface of a circular 
cone whose vertex angle is about 2.5o, with a time of 
period nearly 40000 years. Since the ecliptic’s nor-
mal is the axis of precession cone, therefore the cone  
of lunisolar precession sometimes slightly opens, 
sometimes slightly closes due to the oscillation of the 
ecliptic’s plane with a period of 40000 years; i.e. the 
vertex angle of the cone is not steadily 47o, but it 
varies with a period of approximately 40000 years 
between about 44 and 49o. 

 

 
 

Fig. 5. The planetary precession 
 

As a matter of fact, due to the motion of the eclip-
tic’s plane the Sun and the Moon can be seen from 
the Earth in continuously other directions, with a 
period of 40000 years; and therefore the separation 
between the part-centers of mass 1P  and 2P , and the 
ecliptic’s plane changes continuously as shown in 
Fig. 5, i.e. the torque generation the precession mo-
tion changes (fluctuates) continuously because the 
lever arm continuously changes. 
The resultant of the lunisolar and planetary preces-
sion motions is the general precession, by other name 
the normal precession. During the normal preces-
sional motion the celestial pole moves not exactly 
along a circular path due to the oscillation of the 
ecliptic’s pole, but it wanders related to the fixed 
stars along a curve, which closely approximates the 

circular path although the curve does not return into 
itself. Under the effect of the normal precession the 
vernal point shifts westward along the ecliptic with a 
value of about 50.26" annually, consequently the 
time of a complete circuity is about 25786 years. 
 
7 Disturbing precession 
 
As a consequence of the Moon’s, Sun’s and planets’ 
motion related to the Earth a torque changing in time 
has effect on Earth, therefore different fluctuations of 
shorter period are added to the normal precession 
motion. These short period changes in the precession 
motion of the rotation axis have been incorrectly 
called astronomical nutation up to now; in what fol-
lows this phenomenon is called disturbing preces-



sion. The disturbing precession comprises motions of 
different period and amplitude and it is superposed 
on the long period (secular) precession motion. 
It has two rather important periods due to the 
changes in the relative position of the Sun and the 
Earth. The magnitude of the torque exerted by the 
Sun on the equatorial bulge of Earth depends on the 
Sun’s angle of declination (on the altitude above the 
Earth’s equatorial plane). Fig. 4 e.g. shows the Earth 
in the position of winter solstice, when o523.−=δ . 
At that time and on the day of summer solstice 
(when o523.+=δ ) the Sun exerts maximum torque 
on the Earth. Between the two positions the torque 
decreases and increases, respectively. At the moment 
of the spring and fall equinox the centers of gravity 

1P  and 2P  of the Earth’s two equatorial excess 
masses (equatorial bulge) as interpreted in Fig. 4 are 
at equal distances from the Sun, thus the torque caus-
ing the precession is zero. In accordance with this, 
the Earth’s precession varies with a half year period, 
due to the changes in the Sun’s declination. A pre-
cession variation of one-year period is also added to 
this; this is a consequence of the fact that the Earth 
orbits in an orbit of elliptical shape around the Sun 

and therefore its distance measured from the Sun 
varies with a one-year period, and in accordance with 
this the torque as well. 
During its orbit around the Earth the Moon causes 
completely similar changes, but its periods are 
shorter and amplitudes are higher. In addition, mo-
tion of the Moon has a further effect too, that is even 
much more important than the previous ones. The 
Moon does not orbit around the Earth in one and the 
same plane in which the Earth orbits around the Sun, 
the Moon’s orbital plane and the plane of ecliptic 
include an angle of nearly 5o09'. As the intersection 
line of the Moon’s orbital plane and the ecliptic 
plane (the nodal line of the Moon’s orbit) wanders 
round in the plane of ecliptic with a period of 18.6 
years, therefore the Moon can be seen from the Earth 
in continuously different directions with a period of 
18.6 years, and thus according to Fig. 6 continuously 
changes the distance of the part-centers of mass 1P  
and 2P  from the Moon’s orbital plane. As a conse-
quence, the torque causing the precession motion 
also changes (fluctuates) continuously, because the 
lever arm continuously changes. 

 

 
Fig. 6. Impact of the lunar main component of disturbing precession 

 
The disturbing precession’s component which origi-
nates from the motion of the Moon orbit’s nodal line 
is many times larger than together all the other 
changes comprising the precession, therefore it is 
called the lunar main component of the disturbing-
precession. 
Thus the Earth’s rotational angular velocity vector 
wanders round the normal of the ecliptic with an 
average vertex angle of about 47o at present, along 
the wavy surface of a cone that can be seen in Fig. 6. 

These waves have amplitudes of about 9" (so much 
is the fluctuation in the tilt of the rotation axis: the 
so-called obliquity component), and their wave-
lengths are nearly 15.6'. 
It is a general practice as well to demonstrate the 
precession motion together with the main component 
of the disturbing precession with the so-called pre-
cession ellipse that can be seen in Fig. 7. (The term 
of nutation ellipse widely spread in practice up to 
now is incorrect because this has nothing to do with 



nutation.) Thus, the center of the precession ellipse 
wanders with constant velocity round the ecliptic’s 
pole at a polar distance of 23.5o and makes a com-
plete circle in 26000 years, while the real (the instan-
taneous) celestial pole move along the precession 
ellipse with a period of 18.6 years. The half major 
axis of the precession ellipse whose distance is 9" is 
always directed toward the ecliptic’s pole, and its 
half minor axis of a 7" distance is perpendicular to 
that. 

 

 
Fig. 7. The precession ellipse 

 
 
Summary 
 
The spatial direction and magnitude of the angular 
velocity vector always changes during the Earth’s 
rotation. The changes can be seen summarized in 
Fig. 8. Change in the absolute value (length of the 
day) of the angular velocity vector ω

r
 is primarily 

the consequence of the so-called tidal friction caused 
by the Moon and the Sun (VÖLGYESI, 1999). 
Changes in spatial direction of the angular velocity 
vector ω

r
 can be divided into two groups: changes 

caused by the precession and nutation motions. The 
two components of the precession motion are the 
normal precession and the disturbing precession, and 
two further components of the normal precession are 
the lunisolar and the planetary precession. The 
Earth’s nutational motion, also consists of two com-
ponents: the polar motion and the polar wandering; 
while the polar motion has two further components, 
the free nutation and the forced nutation. 
From the above considerations it can clearly be seen 
that because of the relative changes in the positions 
of the Moon, the Sun and the planets related to the 
Earth the fluctuations of shorter period arising as a 
result of the time-varying torque cannot be called 
nutation in physical sense. Due to the complicated 
movement of the relevant celestial bodies the torque 
generating the precession changes, as a consequence 

the mass of the Earth together with the rotation axis 
of fixed position relative to it makes the varying pre-
cession motion. Contrary to this, during the nuta-
tional motion the rotation axis of the Earth does not 
move together with the Earth’s mass, but independ-
ently of the impact of any kind of torque the Earth’s 
mass and its symmetry axis separately from the rota-
tion axis make their own complicated motions (this 
is merely due to the fact that the rotation does not 
take place round the symmetry axis). Wording it in a 
simpler form extraterrestrial masses are responsible 
for the precession, on the other hand, exclusively the 
Earth’s own mass (its mass distribution) is responsi-
ble for the nutation. 
Consequently, it seems to be reasonable to use the 
term of disturbing precession in the future instead of 
the misleading astronomical nutation. 
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Fig. 8. Variation of the Earth’s rotational angular velocity 
vector in time and space 
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