Giwer: Geolmage Workflow Editing Resources

egy ELTE IK-s open sources csomag

Elek István ELTE IK

Foszforgézu Konferencia 2023.06.09.

Project no. ED_18-1-2019-0030 (Application-specific highly reliable IT solutions) has been implemented with the support provided from the National Research, Development and Innovation Fund of Hungary, financed under the Thematic Excellence Program funding scheme.

UTELIK (1) ELTELIK Objective

B ELTE IK

- I. Create a system for processing images taken from space and air, which ELTELIK can also process images from drones
- II. Users can compound their own workflows from the functions available in Giwer and run them on many images

Giwer components

×

Workflow builde

Sub-systems and modules

- Catalog: It organizes large number of images into a database. The Catalog organizes raw images into a database (Sqlite), which reads and stores many images and image parameters from their exif data, and also provides storage options in interactive fields.
- DataStock: It is an interactive image processing system.
 We have implemented large number of image processing functions that can be accessed via the menu system
- **3.** WorkflowBuilder: This is a workflow editor. From the available functions, arbitrary workflows can be compiled, so the user can create their own processing procedures based on their individual knowledge, experience and creativity.

Difficulties

- Geotif is still the most standard
- Bil is so diverse that it is already annoying (ESRI bil, ENVI bil, ER Mapper bil)
- Exif is not standard at all (we need to further develop different exif readers if we want to read the full exif of additional cameras)
- Data from different cameras is not uniform. For example, a DJI RGB camera contains altitude data, but Micasense does not, and the GPS built into the cameras is inaccurate. The RTK GPS built into the drone is accurate, but its data cannot be extracted from it.
- As long as there is no exact height data, we cannot calculate the coordinates of the corner points of the images, therefore it is not possible to display several images in a mosaic-like manner.

Results briefly

1. DataStock (interactive) is completed (v1.0 completed)

- 2. Catalog is completed (v1.0 completed)
- WorkflowBuilder is completed (v1.0 completed)
 The necessary documentation is being prepared
 - a) users 'guide in Hungarian and English
 - b) Developer docs in English
 - c) Tutorials in Hungarian and English

ELTEIIK

🜔 ELTE | I K

() ELTE||K

E

ELTEIIK

Bands for RGB

Green

Eq

H

- Loads images from different file format: gwr, bil, ENVI bil, cub, tif, grotif, jpg with 8,16,24,48 bits, with many bands from 3 (RGB) to 250 bands
- Creates RGB display
- **Displays histogram and equalizes**
- Draws crossplot with any of two bands
- Displays file header
- Applies functions of the filter bank
- **Computes NDVI and PCA**
- Loads and displays 3D data (digital terrain modell)
- Runs the raster calculator (select pixels ۶ under the given condition)
- Classification, clustering ۶
- Combines images (add, average, exor, ⊳ subtract, etc)
- Converts from one format to another
- Analyses and displays spectrums >
- Extended raster calculator with graphics

RGB

Clustering

Colour palette and lookup table

ELTE Color palettes (CP) and lookup tables (LUT)

Remove

selected

color palette

Create new

color palette

Available (color palett	es: hyp	sometric			\sim
Index	Red	Green	Blue	Alfa	Color	^
129	255	134	13	255		
130	255	134	13	255		
131	255	134	13	255		
132	255	134	13	255		
133	255	134	13	255		
134	255	134	13	255		
135	255	134	13	255		
136	255	134	13	255		
137	255	134	13	255		
138	255	134	13	255		
139	255	134	13	255		
140	255	134	13	255		
	Î	Î		Î		Ť

Generate

palette

colors

Save color

palette

(B) ELTELIK

e i K

() E

) ELTE I K

Snapshots from Giwer's operations

Methods for analysing hyperspectral images

Snapshots from Giwer's operations

Raster calculator

By plotting the intensities of the different frequency bands in a cross-plot, certain areas can be queried by graphical selection. For now, only one arbitrary line is the tool of separation.

Snapshots from Giwer's operations

Rastercalculator

Catalog's operations briefly

- Catalog is an SQLite-based program for registering images in the file system ELLK and storing their attributes in a data table.
- It allows you to import taken images directly from the drone's media, read their attribute data, and store them in an SQLite data file. We can store data either from the EXIF automatically, some fields can be filled interactively or even a deployment report can be written too.
- The Sql command editor helps you find the images you need.

C:\	C:\Users\eleki\Desktop\cat\dronimagecatalog.s3db - 🗆 🗙								
: Ee	A	cursor position	n: 1 / 18 932		🕂 😋 🔀 🛛 🖬	Exif	Select all		
	id	filename	timestamp	type	bitspersample	samplesperpixel	image_size	file_size	1 ^
•	1	IMG_0600_1.tif	2020. 09. 10. 11:46	multi	16	1	2064x1544	6382034	Т
	2	IMG_0600_2.tif	2020. 09. 10. 11:46	multi	16	1	2064x1544	6382008	Т
	3	IMG_0600_3.tif	2020. 09. 10. 11:46	multi	16	1	2064x1544	6382012	Т
	4	IMG_0600_4.tif	2020. 09. 10. 11:46	multi	16	1	2064x1544	6382004	Т
	5	IMG_0600_5.tif	2020. 09. 10. 11:46	multi	16	1	2064x1544	6382018	Т
	6	IMG_0600_6.tif	2020. 09. 10. 11:46	multi	16	1	160x120	44722	Т
	7	DJI_0007.JPG	2020. 09. 10. 13:40	RGB	8	3	5280x2970	6799825	Т
	8	DJI_0009.JPG	2020. 09. 10. 13:43	RGB	8	3	5280x2970	7026657	Т
	9	DJI_0010.JPG	2020. 09. 10. 13:44	RGB	8	3	5280x2970	6602686	Т
	10	DJI_0011.JPG	2020. 09. 10. 13:44	RGB	8	3	5280x2970	6592771	Т
	11	DJI_0014.JPG	2020. 09. 10. 13:45	RGB	8	3	5280x2970	6968375	Т
	12	DJI_0015.JPG	2020. 09. 10. 13:45	RGB	8	3	5280x2970	6973159	Т
	13	DJI_0016.JPG	2020. 09. 10. 13:46	RGB	8	3	5280x2970	6972641	Т
	14	DJI_0019.JPG	2020. 09. 10. 13:50	RGB	8	3	5280x2970	7224836	Т
	15	DJI_0020.JPG	2020. 09. 10. 13:50	RGB	8	3	5280x2970	7192925	Т
	16	DJI_0021.JPG	2020. 09. 10. 13:50	RGB	8	3	5280x2970	7014559	Т
	17	DJI 0022.JPG	2020. 09. 10. 13:50	RGB	8	3	5280x2970	6984827	T Y
<									>

Editable fields

n3		
n3 Documents azido cikkek covid DATA bil Cub_files_minta SPOT_XS SPOT_XS tiszato multi RGB dtm eesa gwr gwr gwr gwr gwr gwr gwr stm 30 tif	Image: Set destination folder DJI_0042.JPG DJI_0069.JPG DJI_0096.JPG DJI_0123.JPG DJI_0043.JPG DJI_0070.JPG DJI_0097.JPG DJI_0124.JPG DJI_0044.JPG DJI_0071.JPG DJI_0098.JPG DJI_0126.JPG DJI_0044.JPG DJI_0072.JPG DJI_01099.JPG DJI_0126.JPG DJI_0045.JPG DJI_0073.JPG DJI_0100.JPG DJI_0127.JPG DJI_0046.JPG DJI_0073.JPG DJI_0100.JPG DJI_0127.JPG DJI_0046.JPG DJI_0075.JPG DJI_0102.JPG DJI_0127.JPG DJI_0044.JPG DJI_0075.JPG DJI_0102.JPG DJI_012.3PG DJI_0049.JPG DJI_0077.JPG DJI_0103.JPG DJI_012.3PG DJI_0051.JPG DJI_0078.JPG DJI_0105.JPG DJI_012.8JPG DJI_0052.JPG DJI_0078.JPG DJI_0107.JPG DJI_0105.JPG DJI_0053.JPG DJI_0081.JPG DJI_0107.JPG DJI_0103.JPG DJI_0055.JPG DJI_0083.JPG DJI_0110.JPG DJI_0085.JPG DJI_0055.JPG DJI_0085.JPG DJI_0111.JPG DJI_0085.JPG DJI_0113.JPG	TE I IK ELTE I K
	DJI_0065.JPG DJI_0092.JPG DJI_0119.JPG DJI_0066.JPG DJI_0093.JPG DJI_0120.JPG DJI_0067.JPG DJI_0094.JPG DJI_0121.JPG DJI_0068.JPG DJI_0095.JPG DJI_0122.JPG Destination folder -> C:\DRON_IMAGES	IETIK (S)ELIETIK

Long: 20,/160413 Lat 4/,612/814

Problems with drones

Mapping errors in the images of the multispectral camera

- One image file is generated per frequency band (this would not be a problem yet)
- However, these images do not exactly overlap: 5-25 pixels shift between frequency bands
- The coordinates of the image position given by the GPS built into the cameras are not accurate enough, so flight data and image positions make it difficult to match overlapping images (mosaic)
- Camera distortions make it difficult to fit images. All of the problems above need to be corrected.

Micasense camera correction

The correction procedure for shifted individual frequency bands were prepared by Máté Cserép. The process is based on an affine transformation which computes the cross correlation between images, and computes the shifts in this way.

Improve of Catalog's operations

- We solved the storage of raw images and header data (Exif, header, etc.). These are raw data only, although it may be necessary to store calculated data in the database, even if these can be calculated from the raw data.
- This can be an obvious extension of version 1. The benefit of previous version, despite the wide variety of file formats, is easy to handle these images since they are in known image formats (tif, geotif, jpg, geojpg, bil, ENVI bil, ER Mapper bil, cub, etc.). If you are going to store special remote sensing files too this can be the next task to improve Catalog's functionality. It can be useful for any image processing program, regardless of the Giwer.

Snapshots from Workflow's operations

From Giwer's functions you can create any workflow that can be saved, edited and run. If an experienced user wants to create their own processing procedures, they can do so with workflow builder. If the task is to do some processing on hundreds of images, the workflow builder is a great tool for that. However, we need to create a project file in advance, which we will use workflow.

Development is complete, but it should be emphasized that this is only the version 1.0.

🔬 Workflow Builder		×
File Metadata Name: wf1	Description:	^ ~
Operations LaplaceFilter (0) LowPassFilter (1) MedianFilter (1) NDVI (2) PrewittFilter (0) SobelFilter (0) Thresholding (1)	LowPassFilter (1) MedianFilter (1) Thresholding (1) SobelFilter (0) NDVI (2)	··· ↑ ↓ //
Parameters nirBand: 3 redBand: 2	Save final result in file name + the following appendix: <u>res</u>	

Snapshots from Workflow's operations

Workflow

3

) ELTE IK

#Description: This is an example workflow #Methods: LowPassFilter (1)

MedianFilter (1) ELTE K

Thresholding (1) 50 SobelFilter (0) NDVI (2) 3 ELTE IK 2 Project

) ELTE | IK

() ELTE | IK

#Description:

This project is for reading and handling two satellite images (LANDSAT and SPOT)

#Files:

C:\Users\eleki\Documents\DATA\gwr\landsat_TM_1985.gwh C:\Users\eleki\Documents\DATA\gwr\SPOT_XS.gwh #Config_data:

BilDataFolder, C:\Users\eleki\Documents\DATA\bil
JpgDataFolder, C:\Users\eleki\Documents\DATA\jpg
TifDataFolder, C:\Users\eleki\Documents\DATA\tif
GiwerDataFolder, C:\Users\eleki\Documents\DATA\gwr
3DDataFolder, C:\Users\eleki\Documents\DATA\dtm
ProjectFolder, C:\Users\eleki\Documents\DATA\projects
WorkflowFolder,

C:\Users\eleki\Documents\DATA\projects

ELTE IK () ELTE IK () ELTE

Publications

- Istvan Elek: Boundary Detection of Point Clouds on the Images of Low-Resolution Cameras for the Autonomous Car Problem, Intelligent Computing : Proceedings of the 2020 Computing Conference, Volume 2, Cham: Springer, pp 572-581 (2020) (Advances in Intelligent Systems and Computing ; 1229)
- 2. Elek István Cserép Máté: Drón képek feldolgozása a nyílt forráskódú Giwer programcsomaggal, GITA, 16. Műszaki Térinformatika online konferencia, 2021. június
- 3. Istvan Elek Máté Cserép: Processing drone images with the open source Giwer software package, FTC 2021 Future Technologies Conference 2021, 28-29 October 2021, Vancouver
- 4. Nour Naaouf István Elek: Geospatial Analysis for assessing the Potentials of Large-Scale generation of Solar Energy in SYRIA, Geodézia és Kartográfia, 2022.
- 5. Istvan Elek: GeoImage Workflow Editing Resources: GIWER, book chapter, New Trends and Challenges in Open Data, IntechOpen, England, 2023, DOI: 10.5772/intechopen.1001297

Be the Giwer open source ?

Yes, let it be. The complete Giwer package has been uploaded to gitHub with minimal documentation (users' guide in Hungarian). Version 1.0 has been completed for all modules.

From May to the end of July, when the TKP is closed, we will write documentation, users' guide (in Hungarian and English), developers' documentation (in English only), and tutorial (in Hungarian and English).

Contact: <u>elek@inf.elte.hu</u>, <u>elek@map.elte.hu</u>

